地理中心点聚合
编辑地理中心点聚合
编辑一种度量聚合,用于计算来自地理字段所有坐标值的加权形心。
示例
resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "geo_point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (4.901618 52.369219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (4.914722 52.371667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (2.327000 48.860000)", "city": "Paris", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", aggs={ "centroid": { "geo_centroid": { "field": "location" } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'geo_point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (4.912350 52.374081)', city: 'Amsterdam', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (4.901618 52.369219)', city: 'Amsterdam', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (4.914722 52.371667)', city: 'Amsterdam', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (4.405200 51.222900)', city: 'Antwerp', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (2.336389 48.861111)', city: 'Paris', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (2.327000 48.860000)', city: 'Paris', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { aggregations: { centroid: { geo_centroid: { field: 'location' } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "geo_point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (4.912350 52.374081)", city: "Amsterdam", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (4.901618 52.369219)", city: "Amsterdam", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (4.914722 52.371667)", city: "Amsterdam", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (4.405200 51.222900)", city: "Antwerp", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (2.336389 48.861111)", city: "Paris", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (2.327000 48.860000)", city: "Paris", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, aggs: { centroid: { geo_centroid: { field: "location", }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "geo_point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (4.901618 52.369219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (4.914722 52.371667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (2.327000 48.860000)", "city": "Paris", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } }
|
上述聚合演示了如何计算所有博物馆文档的地理位置字段的形心。
上述聚合的响应
{ ... "aggregations": { "centroid": { "location": { "lat": 51.00982965203002, "lon": 3.9662131341174245 }, "count": 6 } } }
geo_centroid
聚合与其他桶聚合组合使用时更有趣。
示例
resp = client.search( index="museums", size="0", aggs={ "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } } }, ) print(resp)
response = client.search( index: 'museums', size: 0, body: { aggregations: { cities: { terms: { field: 'city.keyword' }, aggregations: { centroid: { geo_centroid: { field: 'location' } } } } } } ) puts response
const response = await client.search({ index: "museums", size: 0, aggs: { cities: { terms: { field: "city.keyword", }, aggs: { centroid: { geo_centroid: { field: "location", }, }, }, }, }, }); console.log(response);
POST /museums/_search?size=0 { "aggs": { "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } } } }
以上示例使用geo_centroid
作为terms桶聚合的子聚合,用于查找每个城市博物馆的中心位置。
上述聚合的响应
{ ... "aggregations": { "cities": { "sum_other_doc_count": 0, "doc_count_error_upper_bound": 0, "buckets": [ { "key": "Amsterdam", "doc_count": 3, "centroid": { "location": { "lat": 52.371655656024814, "lon": 4.909563297405839 }, "count": 3 } }, { "key": "Paris", "doc_count": 2, "centroid": { "location": { "lat": 48.86055548675358, "lon": 2.3316944623366 }, "count": 2 } }, { "key": "Antwerp", "doc_count": 1, "centroid": { "location": { "lat": 51.22289997059852, "lon": 4.40519998781383 }, "count": 1 } } ] } } }
对geo_shape
字段使用地理中心点聚合
编辑与点相比,地理形状的形心度量更加细致。包含形状的特定聚合桶的形心是桶中最高维度形状类型的形心。例如,如果一个桶包含由多边形和线组成的形状,则这些线不会对形心度量产生影响。每种类型的形状的形心计算方式不同。通过圆形处理器摄取的信封和圆形被视为多边形。
几何类型 | 形心计算 |
---|---|
[多]点 |
所有坐标的等权平均值 |
[多]线串 |
每段形心的加权平均值,其中每段的权重为其以度为单位的长度 |
[多]多边形 |
所有多边形三角形的形心的加权平均值,其中三角形由每两个连续顶点和起点形成。孔具有负权重。权重表示以deg^2为单位计算的三角形面积 |
几何集合 |
所有具有最高维度的底层几何的形心。如果有多边形和线以及/或点,则忽略线和/或点。如果只有线和点,则忽略点 |
示例
resp = client.indices.create( index="places", mappings={ "properties": { "geometry": { "type": "geo_shape" } } }, ) print(resp) resp1 = client.bulk( index="places", refresh=True, operations=[ { "index": { "_id": 1 } }, { "name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" }, { "index": { "_id": 2 } }, { "name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ], ) print(resp1) resp2 = client.search( index="places", size="0", aggs={ "centroid": { "geo_centroid": { "field": "geometry" } } }, ) print(resp2)
response = client.indices.create( index: 'places', body: { mappings: { properties: { geometry: { type: 'geo_shape' } } } } ) puts response response = client.bulk( index: 'places', refresh: true, body: [ { index: { _id: 1 } }, { name: 'NEMO Science Museum', geometry: 'POINT(4.912350 52.374081)' }, { index: { _id: 2 } }, { name: 'Sportpark De Weeren', geometry: { type: 'Polygon', coordinates: [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ] ) puts response response = client.search( index: 'places', size: 0, body: { aggregations: { centroid: { geo_centroid: { field: 'geometry' } } } } ) puts response
const response = await client.indices.create({ index: "places", mappings: { properties: { geometry: { type: "geo_shape", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "places", refresh: "true", operations: [ { index: { _id: 1, }, }, { name: "NEMO Science Museum", geometry: "POINT(4.912350 52.374081)", }, { index: { _id: 2, }, }, { name: "Sportpark De Weeren", geometry: { type: "Polygon", coordinates: [ [ [4.965305328369141, 52.39347642069457], [4.966979026794433, 52.391721758934835], [4.969425201416015, 52.39238958618537], [4.967944622039794, 52.39420969150824], [4.965305328369141, 52.39347642069457], ], ], }, }, ], }); console.log(response1); const response2 = await client.search({ index: "places", size: 0, aggs: { centroid: { geo_centroid: { field: "geometry", }, }, }, }); console.log(response2);
PUT /places { "mappings": { "properties": { "geometry": { "type": "geo_shape" } } } } POST /places/_bulk?refresh {"index":{"_id":1}} {"name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" } {"index":{"_id":2}} {"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } POST /places/_search?size=0 { "aggs": { "centroid": { "geo_centroid": { "field": "geometry" } } } }
{ ... "aggregations": { "centroid": { "location": { "lat": 52.39296147599816, "lon": 4.967404240742326 }, "count": 2 } } }
使用geo_centroid
作为geohash_grid
的子聚合
geohash_grid
聚合将文档(而非单个地理点)放入桶中。如果文档的geo_point
字段包含多个值,则即使文档的一个或多个地理点位于桶边界之外,该文档也可能被分配到多个桶中。
如果还使用了geocentroid
子聚合,则每个形心都是使用桶中的所有地理点计算的,包括位于桶边界之外的那些地理点。这可能导致形心位于桶边界之外。