脚本、缓存和搜索速度
编辑脚本、缓存和搜索速度
编辑Elasticsearch 执行了许多优化措施,以尽可能提高使用脚本的速度。其中一个重要的优化是脚本缓存。编译后的脚本会被放入缓存中,这样引用该脚本的请求就不会产生编译开销。
缓存大小非常重要。您的脚本缓存应该足够大,以容纳用户需要同时访问的所有脚本。
如果您在节点统计中看到大量的脚本缓存驱逐和编译次数上升,则说明您的缓存可能太小。
默认情况下,所有脚本都会被缓存,因此只有在更新发生时才需要重新编译。默认情况下,脚本没有基于时间的过期时间。您可以使用 script.cache.expire
设置来更改此行为。使用 script.cache.max_size
设置来配置缓存的大小。
脚本的大小限制为 65,535 字节。设置 script.max_size_in_bytes
的值可以增加这个软限制。如果您的脚本非常大,请考虑使用原生脚本引擎。
提高搜索速度
编辑脚本非常有用,但不能使用 Elasticsearch 的索引结构或相关优化。这种关系有时会导致搜索速度变慢。
如果您经常使用脚本来转换索引数据,则可以通过在摄取期间转换数据来加快搜索速度。但是,这通常意味着索引速度会变慢。让我们看一个实际的例子来说明如何提高搜索速度。
在运行搜索时,通常会按两个值的总和对结果进行排序。例如,考虑一个名为 my_test_scores
的索引,其中包含测试分数数据。此索引包含两个类型为 long
的字段
-
math_score
-
verbal_score
您可以运行一个使用脚本将这些值相加的查询。这种方法没有错,但是由于脚本估值发生在请求过程中,因此查询速度会较慢。以下请求返回 grad_year
等于 2099
的文档,并按脚本的估值结果排序。
resp = client.search( index="my_test_scores", query={ "term": { "grad_year": "2099" } }, sort=[ { "_script": { "type": "number", "script": { "source": "doc['math_score'].value + doc['verbal_score'].value" }, "order": "desc" } } ], ) print(resp)
response = client.search( index: 'my_test_scores', body: { query: { term: { grad_year: '2099' } }, sort: [ { _script: { type: 'number', script: { source: "doc['math_score'].value + doc['verbal_score'].value" }, order: 'desc' } } ] } ) puts response
const response = await client.search({ index: "my_test_scores", query: { term: { grad_year: "2099", }, }, sort: [ { _script: { type: "number", script: { source: "doc['math_score'].value + doc['verbal_score'].value", }, order: "desc", }, }, ], }); console.log(response);
GET /my_test_scores/_search { "query": { "term": { "grad_year": "2099" } }, "sort": [ { "_script": { "type": "number", "script": { "source": "doc['math_score'].value + doc['verbal_score'].value" }, "order": "desc" } } ] }
如果您正在搜索小型索引,则将脚本包含在搜索查询中可能是一个不错的解决方案。如果您想加快搜索速度,可以在摄取期间执行此计算,并将总和索引到字段中。
首先,我们将在索引中添加一个名为 total_score
的新字段,其中将包含 math_score
和 verbal_score
字段值的总和。
resp = client.indices.put_mapping( index="my_test_scores", properties={ "total_score": { "type": "long" } }, ) print(resp)
response = client.indices.put_mapping( index: 'my_test_scores', body: { properties: { total_score: { type: 'long' } } } ) puts response
const response = await client.indices.putMapping({ index: "my_test_scores", properties: { total_score: { type: "long", }, }, }); console.log(response);
PUT /my_test_scores/_mapping { "properties": { "total_score": { "type": "long" } } }
接下来,使用包含脚本处理器的摄取管道来计算 math_score
和 verbal_score
的总和,并将其索引到 total_score
字段中。
resp = client.ingest.put_pipeline( id="my_test_scores_pipeline", description="Calculates the total test score", processors=[ { "script": { "source": "ctx.total_score = (ctx.math_score + ctx.verbal_score)" } } ], ) print(resp)
response = client.ingest.put_pipeline( id: 'my_test_scores_pipeline', body: { description: 'Calculates the total test score', processors: [ { script: { source: 'ctx.total_score = (ctx.math_score + ctx.verbal_score)' } } ] } ) puts response
const response = await client.ingest.putPipeline({ id: "my_test_scores_pipeline", description: "Calculates the total test score", processors: [ { script: { source: "ctx.total_score = (ctx.math_score + ctx.verbal_score)", }, }, ], }); console.log(response);
PUT _ingest/pipeline/my_test_scores_pipeline { "description": "Calculates the total test score", "processors": [ { "script": { "source": "ctx.total_score = (ctx.math_score + ctx.verbal_score)" } } ] }
要更新现有数据,请使用此管道将 my_test_scores
中的任何文档重新索引到名为 my_test_scores_2
的新索引中。
resp = client.reindex( source={ "index": "my_test_scores" }, dest={ "index": "my_test_scores_2", "pipeline": "my_test_scores_pipeline" }, ) print(resp)
response = client.reindex( body: { source: { index: 'my_test_scores' }, dest: { index: 'my_test_scores_2', pipeline: 'my_test_scores_pipeline' } } ) puts response
const response = await client.reindex({ source: { index: "my_test_scores", }, dest: { index: "my_test_scores_2", pipeline: "my_test_scores_pipeline", }, }); console.log(response);
POST /_reindex { "source": { "index": "my_test_scores" }, "dest": { "index": "my_test_scores_2", "pipeline": "my_test_scores_pipeline" } }
继续使用该管道将任何新文档索引到 my_test_scores_2
。
resp = client.index( index="my_test_scores_2", pipeline="my_test_scores_pipeline", document={ "student": "kimchy", "grad_year": "2099", "math_score": 1200, "verbal_score": 800 }, ) print(resp)
response = client.index( index: 'my_test_scores_2', pipeline: 'my_test_scores_pipeline', body: { student: 'kimchy', grad_year: '2099', math_score: 1200, verbal_score: 800 } ) puts response
const response = await client.index({ index: "my_test_scores_2", pipeline: "my_test_scores_pipeline", document: { student: "kimchy", grad_year: "2099", math_score: 1200, verbal_score: 800, }, }); console.log(response);
POST /my_test_scores_2/_doc/?pipeline=my_test_scores_pipeline { "student": "kimchy", "grad_year": "2099", "math_score": 1200, "verbal_score": 800 }
这些更改会减慢索引过程,但可以加快搜索速度。您可以使用 total_score
字段对 my_test_scores_2
上进行的搜索进行排序,而不是使用脚本。响应几乎是实时的!尽管此过程会减慢摄取时间,但它会大大提高搜索时的查询速度。
resp = client.search( index="my_test_scores_2", query={ "term": { "grad_year": "2099" } }, sort=[ { "total_score": { "order": "desc" } } ], ) print(resp)
response = client.search( index: 'my_test_scores_2', body: { query: { term: { grad_year: '2099' } }, sort: [ { total_score: { order: 'desc' } } ] } ) puts response
const response = await client.search({ index: "my_test_scores_2", query: { term: { grad_year: "2099", }, }, sort: [ { total_score: { order: "desc", }, }, ], }); console.log(response);
GET /my_test_scores_2/_search { "query": { "term": { "grad_year": "2099" } }, "sort": [ { "total_score": { "order": "desc" } } ] }