获取机器学习信息 API

编辑

返回机器学习使用的默认值和限制。

请求

编辑

GET _ml/info

先决条件

编辑

需要 monitor_ml 集群权限。此权限包含在 machine_learning_user 内置角色中。

描述

编辑

此端点旨在供需要完全了解机器学习配置的用户界面使用,其中某些选项未指定,这意味着应使用默认值。可以使用此端点查找这些默认值。它还提供有关当前集群配置中可以运行的机器学习作业的最大大小的信息。

示例

编辑

此端点不接受任何参数

resp = client.ml.info()
print(resp)
response = client.ml.info
puts response
const response = await client.ml.info();
console.log(response);
GET _ml/info

这是一个可能的响应

{
  "defaults" : {
    "anomaly_detectors" : {
      "categorization_analyzer" : {
        "char_filter" : [
          "first_line_with_letters"
        ],
        "tokenizer" : "ml_standard",
        "filter" : [
          {
            "type" : "stop",
            "stopwords" : [
              "Monday",
              "Tuesday",
              "Wednesday",
              "Thursday",
              "Friday",
              "Saturday",
              "Sunday",
              "Mon",
              "Tue",
              "Wed",
              "Thu",
              "Fri",
              "Sat",
              "Sun",
              "January",
              "February",
              "March",
              "April",
              "May",
              "June",
              "July",
              "August",
              "September",
              "October",
              "November",
              "December",
              "Jan",
              "Feb",
              "Mar",
              "Apr",
              "May",
              "Jun",
              "Jul",
              "Aug",
              "Sep",
              "Oct",
              "Nov",
              "Dec",
              "GMT",
              "UTC"
            ]
          },
          {
            "type": "limit",
            "max_token_count": "100"
          }
        ]
      },
      "model_memory_limit" : "1gb",
      "categorization_examples_limit" : 4,
      "model_snapshot_retention_days" : 10,
      "daily_model_snapshot_retention_after_days" : 1
    },
    "datafeeds" : {
      "scroll_size" : 1000
    }
  },
  "upgrade_mode": false,
  "native_code" : {
    "version": "7.0.0",
    "build_hash": "99a07c016d5a73"
  },
  "limits" : {
    "effective_max_model_memory_limit": "28961mb",
    "total_ml_memory": "86883mb",
    "total_ml_processors": 16,
    "max_single_ml_node_processors": 16
  }
}