执行推理 API编辑

此功能处于技术预览阶段,可能会在未来版本中更改或删除。Elastic 将努力解决任何问题,但技术预览版中的功能不受官方 GA 功能支持 SLA 的约束。

使用推理端点对输入文本执行推理任务。

推理 API 使您能够使用某些服务,例如内置机器学习模型(ELSER、E5)、通过 Eland、Cohere、OpenAI 或 Hugging Face 上传的模型。对于内置模型和通过 Eland 上传的模型,推理 API 提供了一种使用和管理训练模型的替代方法。但是,如果您不打算使用推理 API 来使用这些模型,或者您想使用非 NLP 模型,请使用机器学习训练模型 API

请求编辑

POST /_inference/<inference_id>

POST /_inference/<task_type>/<inference_id>

先决条件编辑

  • 需要 monitor_inference 集群权限(内置的 inference_admininference_user 角色授予此权限)

说明编辑

执行推理 API 使您能够使用机器学习模型对您作为输入提供的数据执行特定任务。API 返回包含任务结果的响应。您使用的推理端点可以执行一项特定任务,该任务是在使用创建推理 API创建端点时定义的。

路径参数编辑

<inference_id>
(必填,字符串)推理端点的唯一标识符。
<task_type>
(可选,字符串)模型执行的推理任务类型。

查询参数编辑

timeout
(可选,超时)控制等待推理完成的时间量。默认为 30 秒。

请求正文编辑

input

(必填,字符串或字符串数组)要对其执行推理任务的文本。input 可以是单个字符串或数组。

completion 任务类型的推理端点当前仅支持单个字符串作为输入。

query
(必填,字符串)仅适用于 rerank 推理端点。搜索查询文本。

示例编辑

完成示例编辑

以下示例对示例问题执行完成。

resp = client.inference.inference(
    task_type="completion",
    inference_id="openai_chat_completions",
    body={"input": "What is Elastic?"},
)
print(resp)
POST _inference/completion/openai_chat_completions
{
  "input": "What is Elastic?"
}

API 返回以下响应

{
  "completion": [
    {
      "result": "Elastic is a company that provides a range of software solutions for search, logging, security, and analytics. Their flagship product is Elasticsearch, an open-source, distributed search engine that allows users to search, analyze, and visualize large volumes of data in real-time. Elastic also offers products such as Kibana, a data visualization tool, and Logstash, a log management and pipeline tool, as well as various other tools and solutions for data analysis and management."
    }
  ]
}
重新排序示例编辑

以下示例对示例输入执行重新排序。

resp = client.inference.inference(
    task_type="rerank",
    inference_id="cohere_rerank",
    body={
        "input": ["luke", "like", "leia", "chewy", "r2d2", "star", "wars"],
        "query": "star wars main character",
    },
)
print(resp)
POST _inference/rerank/cohere_rerank
{
  "input": ["luke", "like", "leia", "chewy","r2d2", "star", "wars"],
  "query": "star wars main character"
}

API 返回以下响应

{
  "rerank": [
    {
      "index": "2",
      "relevance_score": "0.011597361",
      "text": "leia"
    },
    {
      "index": "0",
      "relevance_score": "0.006338922",
      "text": "luke"
    },
    {
      "index": "5",
      "relevance_score": "0.0016166499",
      "text": "star"
    },
    {
      "index": "4",
      "relevance_score": "0.0011695103",
      "text": "r2d2"
    },
    {
      "index": "1",
      "relevance_score": "5.614787E-4",
      "text": "like"
    },
    {
      "index": "6",
      "relevance_score": "3.7850367E-4",
      "text": "wars"
    },
    {
      "index": "3",
      "relevance_score": "1.2508839E-5",
      "text": "chewy"
    }
  ]
}
稀疏嵌入示例编辑

以下示例对示例句子执行稀疏嵌入。

resp = client.inference.inference(
    task_type="sparse_embedding",
    inference_id="my-elser-model",
    body={
        "input": "The sky above the port was the color of television tuned to a dead channel."
    },
)
print(resp)
response = client.inference.inference(
  task_type: 'sparse_embedding',
  inference_id: 'my-elser-model',
  body: {
    input: 'The sky above the port was the color of television tuned to a dead channel.'
  }
)
puts response
POST _inference/sparse_embedding/my-elser-model
{
  "input": "The sky above the port was the color of television tuned to a dead channel."
}

API 返回以下响应

{
  "sparse_embedding": [
    {
      "port": 2.1259406,
      "sky": 1.7073475,
      "color": 1.6922266,
      "dead": 1.6247464,
      "television": 1.3525393,
      "above": 1.2425821,
      "tuned": 1.1440028,
      "colors": 1.1218185,
      "tv": 1.0111054,
      "ports": 1.0067928,
      "poem": 1.0042328,
      "channel": 0.99471164,
      "tune": 0.96235967,
      "scene": 0.9020516,
      (...)
    },
    (...)
  ]
}