笛卡尔边界聚合
编辑笛卡尔边界聚合
编辑一种度量聚合,用于计算包含 点 或 形状 字段所有值的的空间边界框。
示例
resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (491.2350 5237.4081)", "city": "Amsterdam", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (490.1618 5236.9219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (491.4722 5237.1667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (440.5200 5122.2900)", "city": "Antwerp", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (233.6389 4886.1111)", "city": "Paris", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (232.7000 4886.0000)", "city": "Paris", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", query={ "match": { "name": "musée" } }, aggs={ "viewport": { "cartesian_bounds": { "field": "location" } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (491.2350 5237.4081)', city: 'Amsterdam', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (490.1618 5236.9219)', city: 'Amsterdam', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (491.4722 5237.1667)', city: 'Amsterdam', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (440.5200 5122.2900)', city: 'Antwerp', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (233.6389 4886.1111)', city: 'Paris', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (232.7000 4886.0000)', city: 'Paris', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { query: { match: { name: 'musée' } }, aggregations: { viewport: { cartesian_bounds: { field: 'location' } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (491.2350 5237.4081)", city: "Amsterdam", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (490.1618 5236.9219)", city: "Amsterdam", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (491.4722 5237.1667)", city: "Amsterdam", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (440.5200 5122.2900)", city: "Antwerp", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (233.6389 4886.1111)", city: "Paris", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (232.7000 4886.0000)", city: "Paris", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, query: { match: { name: "musée", }, }, aggs: { viewport: { cartesian_bounds: { field: "location", }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (491.2350 5237.4081)", "city": "Amsterdam", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (490.1618 5236.9219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (491.4722 5237.1667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (440.5200 5122.2900)", "city": "Antwerp", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (233.6389 4886.1111)", "city": "Paris", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (232.7000 4886.0000)", "city": "Paris", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "query": { "match": { "name": "musée" } }, "aggs": { "viewport": { "cartesian_bounds": { "field": "location" } } } }
与 geo_bounds
聚合不同,没有选项可以设置 wrap_longitude
。这是因为笛卡尔空间是欧几里得空间,不会自身环绕。因此,边界始终具有小于或等于最大 x 值的最小 x 值。
上述聚合演示了如何计算名称匹配“musée”的所有文档的 location 字段的边界框。
上述聚合的响应
{ ... "aggregations": { "viewport": { "bounds": { "top_left": { "x": 232.6999969482422, "y": 4886.111328125 }, "bottom_right": { "x": 233.63890075683594, "y": 4886.0 } } } } }
shape
字段上的笛卡尔边界聚合
编辑笛卡尔边界聚合也支持 cartesian_shape
字段。
示例
resp = client.indices.create( index="places", mappings={ "properties": { "geometry": { "type": "shape" } } }, ) print(resp) resp1 = client.bulk( index="places", refresh=True, operations=[ { "index": { "_id": 1 } }, { "name": "NEMO Science Museum", "geometry": "POINT(491.2350 5237.4081)" }, { "index": { "_id": 2 } }, { "name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.172175893484 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } ], ) print(resp1) resp2 = client.search( index="places", size="0", aggs={ "viewport": { "cartesian_bounds": { "field": "geometry" } } }, ) print(resp2)
response = client.indices.create( index: 'places', body: { mappings: { properties: { geometry: { type: 'shape' } } } } ) puts response response = client.bulk( index: 'places', refresh: true, body: [ { index: { _id: 1 } }, { name: 'NEMO Science Museum', geometry: 'POINT(491.2350 5237.4081)' }, { index: { _id: 2 } }, { name: 'Sportpark De Weeren', geometry: { type: 'Polygon', coordinates: [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.172175893484 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } ] ) puts response response = client.search( index: 'places', size: 0, body: { aggregations: { viewport: { cartesian_bounds: { field: 'geometry' } } } } ) puts response
const response = await client.indices.create({ index: "places", mappings: { properties: { geometry: { type: "shape", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "places", refresh: "true", operations: [ { index: { _id: 1, }, }, { name: "NEMO Science Museum", geometry: "POINT(491.2350 5237.4081)", }, { index: { _id: 2, }, }, { name: "Sportpark De Weeren", geometry: { type: "Polygon", coordinates: [ [ [496.5305328369141, 5239.347642069457], [496.6979026794433, 5239.172175893484], [496.9425201416015, 5239.238958618537], [496.7944622039794, 5239.420969150824], [496.5305328369141, 5239.347642069457], ], ], }, }, ], }); console.log(response1); const response2 = await client.search({ index: "places", size: 0, aggs: { viewport: { cartesian_bounds: { field: "geometry", }, }, }, }); console.log(response2);
PUT /places { "mappings": { "properties": { "geometry": { "type": "shape" } } } } POST /places/_bulk?refresh {"index":{"_id":1}} {"name": "NEMO Science Museum", "geometry": "POINT(491.2350 5237.4081)" } {"index":{"_id":2}} {"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.1721758934835 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } POST /places/_search?size=0 { "aggs": { "viewport": { "cartesian_bounds": { "field": "geometry" } } } }
{ ... "aggregations": { "viewport": { "bounds": { "top_left": { "x": 491.2349853515625, "y": 5239.4208984375 }, "bottom_right": { "x": 496.9425048828125, "y": 5237.408203125 } } } } }