笛卡尔质心聚合
编辑笛卡尔质心聚合
编辑一种度量聚合,用于计算点和形状字段所有坐标值的加权质心。
示例
resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (491.2350 5237.4081)", "city": "Amsterdam", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (490.1618 5236.9219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (491.4722 5237.1667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (440.5200 5122.2900)", "city": "Antwerp", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (233.6389 4886.1111)", "city": "Paris", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (232.7000 4886.0000)", "city": "Paris", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", aggs={ "centroid": { "cartesian_centroid": { "field": "location" } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (491.2350 5237.4081)', city: 'Amsterdam', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (490.1618 5236.9219)', city: 'Amsterdam', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (491.4722 5237.1667)', city: 'Amsterdam', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (440.5200 5122.2900)', city: 'Antwerp', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (233.6389 4886.1111)', city: 'Paris', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (232.7000 4886.0000)', city: 'Paris', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { aggregations: { centroid: { cartesian_centroid: { field: 'location' } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (491.2350 5237.4081)", city: "Amsterdam", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (490.1618 5236.9219)", city: "Amsterdam", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (491.4722 5237.1667)", city: "Amsterdam", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (440.5200 5122.2900)", city: "Antwerp", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (233.6389 4886.1111)", city: "Paris", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (232.7000 4886.0000)", city: "Paris", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, aggs: { centroid: { cartesian_centroid: { field: "location", }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (491.2350 5237.4081)", "city": "Amsterdam", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (490.1618 5236.9219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (491.4722 5237.1667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (440.5200 5122.2900)", "city": "Antwerp", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (233.6389 4886.1111)", "city": "Paris", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (232.7000 4886.0000)", "city": "Paris", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "aggs": { "centroid": { "cartesian_centroid": { "field": "location" } } } }
上述聚合演示了如何计算所有博物馆文档的 location 字段的质心。
上述聚合的响应
{ ... "aggregations": { "centroid": { "location": { "x": 396.6213124593099, "y": 5100.982991536458 }, "count": 6 } } }
cartesian_centroid
聚合与其他桶聚合组合使用时更有趣。
示例
resp = client.search( index="museums", size="0", aggs={ "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "cartesian_centroid": { "field": "location" } } } } }, ) print(resp)
const response = await client.search({ index: "museums", size: 0, aggs: { cities: { terms: { field: "city.keyword", }, aggs: { centroid: { cartesian_centroid: { field: "location", }, }, }, }, }, }); console.log(response);
POST /museums/_search?size=0 { "aggs": { "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "cartesian_centroid": { "field": "location" } } } } } }
以上示例使用cartesian_centroid
作为术语桶聚合的子聚合,以查找每个城市博物馆的中心位置。
上述聚合的响应
{ ... "aggregations": { "cities": { "sum_other_doc_count": 0, "doc_count_error_upper_bound": 0, "buckets": [ { "key": "Amsterdam", "doc_count": 3, "centroid": { "location": { "x": 490.9563293457031, "y": 5237.16552734375 }, "count": 3 } }, { "key": "Paris", "doc_count": 2, "centroid": { "location": { "x": 233.16944885253906, "y": 4886.0556640625 }, "count": 2 } }, { "key": "Antwerp", "doc_count": 1, "centroid": { "location": { "x": 440.5199890136719, "y": 5122.2900390625 }, "count": 1 } } ] } } }
在shape
字段上使用笛卡尔质心聚合
编辑形状的质心度量比点的质心度量更细致。包含形状的特定聚合桶的质心是该桶中最高维度形状类型的质心。例如,如果一个桶包含由多边形和线组成的形状,则这些线不会对质心度量做出贡献。每种形状类型的质心计算方式不同。通过圆形处理器摄取的包络线和圆形被视为多边形。
几何类型 | 质心计算 |
---|---|
[多]点 |
所有坐标的等权平均值 |
[多]线串 |
每段的质心的加权平均值,其中每段的权重是其长度(单位与坐标相同) |
[多]多边形 |
所有多边形三角形的质心的加权平均值,其中三角形由每两个连续顶点和起点形成。孔具有负权重。权重表示三角形的面积(单位为坐标单位的平方) |
几何集合 |
所有具有最高维度的底层几何图形的质心。如果存在多边形和线和/或点,则忽略线和/或点。如果存在线和点,则忽略点 |
示例
resp = client.indices.create( index="places", mappings={ "properties": { "geometry": { "type": "shape" } } }, ) print(resp) resp1 = client.bulk( index="places", refresh=True, operations=[ { "index": { "_id": 1 } }, { "name": "NEMO Science Museum", "geometry": "POINT(491.2350 5237.4081)" }, { "index": { "_id": 2 } }, { "name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.172175893484 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } ], ) print(resp1) resp2 = client.search( index="places", size="0", aggs={ "centroid": { "cartesian_centroid": { "field": "geometry" } } }, ) print(resp2)
response = client.indices.create( index: 'places', body: { mappings: { properties: { geometry: { type: 'shape' } } } } ) puts response response = client.bulk( index: 'places', refresh: true, body: [ { index: { _id: 1 } }, { name: 'NEMO Science Museum', geometry: 'POINT(491.2350 5237.4081)' }, { index: { _id: 2 } }, { name: 'Sportpark De Weeren', geometry: { type: 'Polygon', coordinates: [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.172175893484 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } ] ) puts response response = client.search( index: 'places', size: 0, body: { aggregations: { centroid: { cartesian_centroid: { field: 'geometry' } } } } ) puts response
const response = await client.indices.create({ index: "places", mappings: { properties: { geometry: { type: "shape", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "places", refresh: "true", operations: [ { index: { _id: 1, }, }, { name: "NEMO Science Museum", geometry: "POINT(491.2350 5237.4081)", }, { index: { _id: 2, }, }, { name: "Sportpark De Weeren", geometry: { type: "Polygon", coordinates: [ [ [496.5305328369141, 5239.347642069457], [496.6979026794433, 5239.172175893484], [496.9425201416015, 5239.238958618537], [496.7944622039794, 5239.420969150824], [496.5305328369141, 5239.347642069457], ], ], }, }, ], }); console.log(response1); const response2 = await client.search({ index: "places", size: 0, aggs: { centroid: { cartesian_centroid: { field: "geometry", }, }, }, }); console.log(response2);
PUT /places { "mappings": { "properties": { "geometry": { "type": "shape" } } } } POST /places/_bulk?refresh {"index":{"_id":1}} {"name": "NEMO Science Museum", "geometry": "POINT(491.2350 5237.4081)" } {"index":{"_id":2}} {"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 496.5305328369141, 5239.347642069457 ], [ 496.6979026794433, 5239.1721758934835 ], [ 496.9425201416015, 5239.238958618537 ], [ 496.7944622039794, 5239.420969150824 ], [ 496.5305328369141, 5239.347642069457 ] ] ] } } POST /places/_search?size=0 { "aggs": { "centroid": { "cartesian_centroid": { "field": "geometry" } } } }
{ ... "aggregations": { "centroid": { "location": { "x": 496.74041748046875, "y": 5239.29638671875 }, "count": 2 } } }