设置数据流
编辑设置数据流
编辑要设置数据流,请按照以下步骤操作
您还可以将索引别名转换为数据流。
创建索引生命周期策略
编辑虽然是可选的,但我们建议使用 ILM 来自动管理数据流的后备索引。ILM 需要索引生命周期策略。
要在 Kibana 中创建索引生命周期策略,请打开主菜单,然后转到Stack Management > Index Lifecycle Policies。单击创建策略。
您还可以使用创建生命周期策略 API。
resp = client.ilm.put_lifecycle( name="my-lifecycle-policy", policy={ "phases": { "hot": { "actions": { "rollover": { "max_primary_shard_size": "50gb" } } }, "warm": { "min_age": "30d", "actions": { "shrink": { "number_of_shards": 1 }, "forcemerge": { "max_num_segments": 1 } } }, "cold": { "min_age": "60d", "actions": { "searchable_snapshot": { "snapshot_repository": "found-snapshots" } } }, "frozen": { "min_age": "90d", "actions": { "searchable_snapshot": { "snapshot_repository": "found-snapshots" } } }, "delete": { "min_age": "735d", "actions": { "delete": {} } } } }, ) print(resp)
const response = await client.ilm.putLifecycle({ name: "my-lifecycle-policy", policy: { phases: { hot: { actions: { rollover: { max_primary_shard_size: "50gb", }, }, }, warm: { min_age: "30d", actions: { shrink: { number_of_shards: 1, }, forcemerge: { max_num_segments: 1, }, }, }, cold: { min_age: "60d", actions: { searchable_snapshot: { snapshot_repository: "found-snapshots", }, }, }, frozen: { min_age: "90d", actions: { searchable_snapshot: { snapshot_repository: "found-snapshots", }, }, }, delete: { min_age: "735d", actions: { delete: {}, }, }, }, }, }); console.log(response);
PUT _ilm/policy/my-lifecycle-policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_primary_shard_size": "50gb" } } }, "warm": { "min_age": "30d", "actions": { "shrink": { "number_of_shards": 1 }, "forcemerge": { "max_num_segments": 1 } } }, "cold": { "min_age": "60d", "actions": { "searchable_snapshot": { "snapshot_repository": "found-snapshots" } } }, "frozen": { "min_age": "90d", "actions": { "searchable_snapshot": { "snapshot_repository": "found-snapshots" } } }, "delete": { "min_age": "735d", "actions": { "delete": {} } } } } }
创建组件模板
编辑数据流需要匹配的索引模板。在大多数情况下,您可以使用一个或多个组件模板来构成此索引模板。您通常会为映射和索引设置使用单独的组件模板。这使您可以在多个索引模板中重用组件模板。
创建组件模板时,请包括
- 用于
@timestamp
字段的date
或date_nanos
映射。如果您没有指定映射,则 Elasticsearch 会将@timestamp
映射为具有默认选项的date
字段。 - 您的生命周期策略在
index.lifecycle.name
索引设置中。
映射字段时,请使用Elastic Common Schema (ECS)。默认情况下,ECS 字段与多个 Elastic Stack 功能集成。
如果您不确定如何映射字段,请使用运行时字段,以便在搜索时从非结构化内容中提取字段。例如,您可以将日志消息索引到 wildcard
字段,然后在搜索期间从此字段中提取 IP 地址和其他数据。
要在 Kibana 中创建组件模板,请打开主菜单,然后转到Stack Management > Index Management。在索引模板视图中,单击创建组件模板。
您还可以使用创建组件模板 API。
resp = client.cluster.put_component_template( name="my-mappings", template={ "mappings": { "properties": { "@timestamp": { "type": "date", "format": "date_optional_time||epoch_millis" }, "message": { "type": "wildcard" } } } }, meta={ "description": "Mappings for @timestamp and message fields", "my-custom-meta-field": "More arbitrary metadata" }, ) print(resp) resp1 = client.cluster.put_component_template( name="my-settings", template={ "settings": { "index.lifecycle.name": "my-lifecycle-policy" } }, meta={ "description": "Settings for ILM", "my-custom-meta-field": "More arbitrary metadata" }, ) print(resp1)
response = client.cluster.put_component_template( name: 'my-mappings', body: { template: { mappings: { properties: { "@timestamp": { type: 'date', format: 'date_optional_time||epoch_millis' }, message: { type: 'wildcard' } } } }, _meta: { description: 'Mappings for @timestamp and message fields', "my-custom-meta-field": 'More arbitrary metadata' } } ) puts response response = client.cluster.put_component_template( name: 'my-settings', body: { template: { settings: { 'index.lifecycle.name' => 'my-lifecycle-policy' } }, _meta: { description: 'Settings for ILM', "my-custom-meta-field": 'More arbitrary metadata' } } ) puts response
const response = await client.cluster.putComponentTemplate({ name: "my-mappings", template: { mappings: { properties: { "@timestamp": { type: "date", format: "date_optional_time||epoch_millis", }, message: { type: "wildcard", }, }, }, }, _meta: { description: "Mappings for @timestamp and message fields", "my-custom-meta-field": "More arbitrary metadata", }, }); console.log(response); const response1 = await client.cluster.putComponentTemplate({ name: "my-settings", template: { settings: { "index.lifecycle.name": "my-lifecycle-policy", }, }, _meta: { description: "Settings for ILM", "my-custom-meta-field": "More arbitrary metadata", }, }); console.log(response1);
# Creates a component template for mappings PUT _component_template/my-mappings { "template": { "mappings": { "properties": { "@timestamp": { "type": "date", "format": "date_optional_time||epoch_millis" }, "message": { "type": "wildcard" } } } }, "_meta": { "description": "Mappings for @timestamp and message fields", "my-custom-meta-field": "More arbitrary metadata" } } # Creates a component template for index settings PUT _component_template/my-settings { "template": { "settings": { "index.lifecycle.name": "my-lifecycle-policy" } }, "_meta": { "description": "Settings for ILM", "my-custom-meta-field": "More arbitrary metadata" } }
创建索引模板
编辑使用组件模板创建索引模板。指定
要在 Kibana 中创建索引模板,请打开主菜单,然后转到Stack Management > Index Management。在索引模板视图中,单击创建模板。
您还可以使用创建索引模板 API。包含 data_stream
对象以启用数据流。
resp = client.indices.put_index_template( name="my-index-template", index_patterns=[ "my-data-stream*" ], data_stream={}, composed_of=[ "my-mappings", "my-settings" ], priority=500, meta={ "description": "Template for my time series data", "my-custom-meta-field": "More arbitrary metadata" }, ) print(resp)
response = client.indices.put_index_template( name: 'my-index-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, composed_of: [ 'my-mappings', 'my-settings' ], priority: 500, _meta: { description: 'Template for my time series data', "my-custom-meta-field": 'More arbitrary metadata' } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-index-template", index_patterns: ["my-data-stream*"], data_stream: {}, composed_of: ["my-mappings", "my-settings"], priority: 500, _meta: { description: "Template for my time series data", "my-custom-meta-field": "More arbitrary metadata", }, }); console.log(response);
PUT _index_template/my-index-template { "index_patterns": ["my-data-stream*"], "data_stream": { }, "composed_of": [ "my-mappings", "my-settings" ], "priority": 500, "_meta": { "description": "Template for my time series data", "my-custom-meta-field": "More arbitrary metadata" } }
创建数据流
编辑索引请求将文档添加到数据流。这些请求必须使用 op_type
为 create
。文档必须包含 @timestamp
字段。
要自动创建数据流,请提交一个以流名称为目标的索引请求。此名称必须与索引模板的索引模式之一匹配。
resp = client.bulk( index="my-data-stream", operations=[ { "create": {} }, { "@timestamp": "2099-05-06T16:21:15.000Z", "message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736" }, { "create": {} }, { "@timestamp": "2099-05-06T16:25:42.000Z", "message": "192.0.2.255 - - [06/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } ], ) print(resp) resp1 = client.index( index="my-data-stream", document={ "@timestamp": "2099-05-06T16:21:15.000Z", "message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736" }, ) print(resp1)
response = client.bulk( index: 'my-data-stream', body: [ { create: {} }, { "@timestamp": '2099-05-06T16:21:15.000Z', message: '192.0.2.42 - - [06/May/2099:16:21:15 +0000] "GET /images/bg.jpg HTTP/1.0" 200 24736' }, { create: {} }, { "@timestamp": '2099-05-06T16:25:42.000Z', message: '192.0.2.255 - - [06/May/2099:16:25:42 +0000] "GET /favicon.ico HTTP/1.0" 200 3638' } ] ) puts response response = client.index( index: 'my-data-stream', body: { "@timestamp": '2099-05-06T16:21:15.000Z', message: '192.0.2.42 - - [06/May/2099:16:21:15 +0000] "GET /images/bg.jpg HTTP/1.0" 200 24736' } ) puts response
const response = await client.bulk({ index: "my-data-stream", operations: [ { create: {}, }, { "@timestamp": "2099-05-06T16:21:15.000Z", message: '192.0.2.42 - - [06/May/2099:16:21:15 +0000] "GET /images/bg.jpg HTTP/1.0" 200 24736', }, { create: {}, }, { "@timestamp": "2099-05-06T16:25:42.000Z", message: '192.0.2.255 - - [06/May/2099:16:25:42 +0000] "GET /favicon.ico HTTP/1.0" 200 3638', }, ], }); console.log(response); const response1 = await client.index({ index: "my-data-stream", document: { "@timestamp": "2099-05-06T16:21:15.000Z", message: '192.0.2.42 - - [06/May/2099:16:21:15 +0000] "GET /images/bg.jpg HTTP/1.0" 200 24736', }, }); console.log(response1);
PUT my-data-stream/_bulk { "create":{ } } { "@timestamp": "2099-05-06T16:21:15.000Z", "message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736" } { "create":{ } } { "@timestamp": "2099-05-06T16:25:42.000Z", "message": "192.0.2.255 - - [06/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } POST my-data-stream/_doc { "@timestamp": "2099-05-06T16:21:15.000Z", "message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736" }
您还可以使用创建数据流 API 手动创建流。流的名称仍然必须与模板的索引模式之一匹配。
resp = client.indices.create_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.create_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.createDataStream({ name: "my-data-stream", }); console.log(response);
PUT _data_stream/my-data-stream
保护数据流的安全
编辑使用索引权限来控制对数据流的访问。授予数据流的权限会授予其后备索引相同的权限。
有关示例,请参阅数据流权限。
将索引别名转换为数据流
编辑在 Elasticsearch 7.9 之前,您通常会使用带有写入索引的索引别名来管理时间序列数据。数据流取代了此功能,所需的维护更少,并自动与数据层集成。
要将带有写入索引的索引别名转换为具有相同名称的数据流,请使用迁移到数据流 API。在转换期间,别名的索引将成为流的隐藏后备索引。别名的写入索引将成为流的写入索引。流仍然需要一个启用了数据流的匹配索引模板。
resp = client.indices.migrate_to_data_stream( name="my-time-series-data", ) print(resp)
const response = await client.indices.migrateToDataStream({ name: "my-time-series-data", }); console.log(response);
POST _data_stream/_migrate/my-time-series-data
获取有关数据流的信息
编辑要在 Kibana 中获取有关数据流的信息,请打开主菜单,然后转到Stack Management > Index Management。在数据流视图中,单击数据流的名称。
您还可以使用获取数据流 API。
resp = client.indices.get_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.get_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.getDataStream({ name: "my-data-stream", }); console.log(response);
GET _data_stream/my-data-stream
删除数据流
编辑要在 Kibana 中删除数据流及其后备索引,请打开主菜单,然后转到Stack Management > Index Management。在数据流视图中,单击垃圾桶图标。仅当您对数据流具有 delete_index
安全权限时,该图标才会显示。
您还可以使用删除数据流 API。
resp = client.indices.delete_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.delete_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.deleteDataStream({ name: "my-data-stream", }); console.log(response);
DELETE _data_stream/my-data-stream