手动运行降采样
编辑手动运行降采样编辑
降采样时间序列数据流 (TSDS) 的推荐方法是通过索引生命周期管理 (ILM)。但是,如果您没有使用 ILM,则可以手动降采样 TSDS。本指南将向您展示如何使用典型的 Kubernetes 集群监控数据来完成此操作。
要测试手动降采样,请执行以下步骤
先决条件编辑
- 请参阅TSDS 先决条件。
- 无法直接对数据流进行降采样,也无法一次对多个索引进行降采样。只能对一个时间序列索引(TSDS 支持索引)进行降采样。
- 为了对索引进行降采样,它需要是只读的。对于 TSDS 写入索引,这意味着需要先对其进行滚动并使其变为只读。
- 降采样使用 UTC 时间戳。
- 降采样需要在时间序列索引中至少存在一个指标字段。
创建时间序列数据流编辑
首先,您将创建一个 TSDS。为简单起见,在时间序列映射中,所有 time_series_metric
参数都设置为类型 gauge
,但其他值(例如 counter
和 histogram
)也可以使用。 time_series_metric
值决定了在降采样期间使用的统计表示类型。
索引模板包含一组静态时间序列维度:host
、namespace
、node
和 pod
。时间序列维度不会被降采样过程改变。
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, template: { settings: { index: { mode: 'time_series', routing_path: [ 'kubernetes.namespace', 'kubernetes.host', 'kubernetes.node', 'kubernetes.pod' ], number_of_replicas: 0, number_of_shards: 2 } }, mappings: { properties: { "@timestamp": { type: 'date' }, kubernetes: { properties: { container: { properties: { cpu: { properties: { usage: { properties: { core: { properties: { ns: { type: 'long' } } }, limit: { properties: { pct: { type: 'float' } } }, nanocores: { type: 'long', time_series_metric: 'gauge' }, node: { properties: { pct: { type: 'float' } } } } } } }, memory: { properties: { available: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } }, majorpagefaults: { type: 'long' }, pagefaults: { type: 'long', time_series_metric: 'gauge' }, rss: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } }, usage: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' }, limit: { properties: { pct: { type: 'float' } } }, node: { properties: { pct: { type: 'float' } } } } }, workingset: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } } } }, name: { type: 'keyword' }, start_time: { type: 'date' } } }, host: { type: 'keyword', time_series_dimension: true }, namespace: { type: 'keyword', time_series_dimension: true }, node: { type: 'keyword', time_series_dimension: true }, pod: { type: 'keyword', time_series_dimension: true } } } } } } } ) puts response
PUT _index_template/my-data-stream-template { "index_patterns": [ "my-data-stream*" ], "data_stream": {}, "template": { "settings": { "index": { "mode": "time_series", "routing_path": [ "kubernetes.namespace", "kubernetes.host", "kubernetes.node", "kubernetes.pod" ], "number_of_replicas": 0, "number_of_shards": 2 } }, "mappings": { "properties": { "@timestamp": { "type": "date" }, "kubernetes": { "properties": { "container": { "properties": { "cpu": { "properties": { "usage": { "properties": { "core": { "properties": { "ns": { "type": "long" } } }, "limit": { "properties": { "pct": { "type": "float" } } }, "nanocores": { "type": "long", "time_series_metric": "gauge" }, "node": { "properties": { "pct": { "type": "float" } } } } } } }, "memory": { "properties": { "available": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "majorpagefaults": { "type": "long" }, "pagefaults": { "type": "long", "time_series_metric": "gauge" }, "rss": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "usage": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" }, "limit": { "properties": { "pct": { "type": "float" } } }, "node": { "properties": { "pct": { "type": "float" } } } } }, "workingset": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } } } }, "name": { "type": "keyword" }, "start_time": { "type": "date" } } }, "host": { "type": "keyword", "time_series_dimension": true }, "namespace": { "type": "keyword", "time_series_dimension": true }, "node": { "type": "keyword", "time_series_dimension": true }, "pod": { "type": "keyword", "time_series_dimension": true } } } } } } }
提取时间序列数据编辑
因为时间序列数据流被设计为仅接受最近的数据,在本例中,您将使用提取管道在数据被索引时对其进行时间偏移。因此,索引数据的 @timestamp
将来自过去 15 分钟。
使用以下请求创建管道
response = client.ingest.put_pipeline( id: 'my-timestamp-pipeline', body: { description: 'Shifts the @timestamp to the last 15 minutes', processors: [ { set: { field: 'ingest_time', value: '{{_ingest.timestamp}}' } }, { script: { lang: 'painless', source: "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n " } } ] } ) puts response
PUT _ingest/pipeline/my-timestamp-pipeline { "description": "Shifts the @timestamp to the last 15 minutes", "processors": [ { "set": { "field": "ingest_time", "value": "{{_ingest.timestamp}}" } }, { "script": { "lang": "painless", "source": """ def delta = ChronoUnit.SECONDS.between( ZonedDateTime.parse("2022-06-21T15:49:00Z"), ZonedDateTime.parse(ctx["ingest_time"]) ); ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString(); """ } } ] }
接下来,使用批量 API 请求自动创建您的 TSDS 并索引一组十个文档
response = client.bulk( index: 'my-data-stream', refresh: true, pipeline: 'my-timestamp-pipeline', body: [ { create: {} }, { "@timestamp": '2022-06-21T15:49:00Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 91_153, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 463_314_616 }, usage: { bytes: 307_007_078, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 585_236 }, rss: { bytes: 102_728 }, pagefaults: 120_901, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:45:50Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 124_501, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 982_546_514 }, usage: { bytes: 360_035_574, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_339_884 }, rss: { bytes: 381_174 }, pagefaults: 178_473, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:50Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 38_907, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 862_723_768 }, usage: { bytes: 379_572_388, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 431_227 }, rss: { bytes: 386_580 }, pagefaults: 233_166, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:40Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 86_706, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 567_160_996 }, usage: { bytes: 103_266_017, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_724_908 }, rss: { bytes: 105_431 }, pagefaults: 233_166, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:00Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 150_069, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 639_054_643 }, usage: { bytes: 265_142_477, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_786_511 }, rss: { bytes: 189_235 }, pagefaults: 138_172, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:42:40Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 82_260, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 854_735_585 }, usage: { bytes: 309_798_052, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 924_058 }, rss: { bytes: 110_838 }, pagefaults: 259_073, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:42:10Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 153_404, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 279_586_406 }, usage: { bytes: 214_904_955, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_047_265 }, rss: { bytes: 91_914 }, pagefaults: 302_252, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:40:20Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 125_613, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 822_782_853 }, usage: { bytes: 100_475_044, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 2_109_932 }, rss: { bytes: 278_446 }, pagefaults: 74_843, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:40:10Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 100_046, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 567_160_996 }, usage: { bytes: 362_826_547, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_986_724 }, rss: { bytes: 402_801 }, pagefaults: 296_495, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:38:30Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 40_018, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 1_062_428_344 }, usage: { bytes: 265_142_477, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 2_294_743 }, rss: { bytes: 340_623 }, pagefaults: 224_530, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } } ] ) puts response
PUT /my-data-stream/_bulk?refresh&pipeline=my-timestamp-pipeline {"create": {}} {"@timestamp":"2022-06-21T15:49:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":91153,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":463314616},"usage":{"bytes":307007078,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":585236},"rss":{"bytes":102728},"pagefaults":120901,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:45:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":124501,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":982546514},"usage":{"bytes":360035574,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1339884},"rss":{"bytes":381174},"pagefaults":178473,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":38907,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":862723768},"usage":{"bytes":379572388,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":431227},"rss":{"bytes":386580},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":86706,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":103266017,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1724908},"rss":{"bytes":105431},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":150069,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":639054643},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1786511},"rss":{"bytes":189235},"pagefaults":138172,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:42:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":82260,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":854735585},"usage":{"bytes":309798052,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":924058},"rss":{"bytes":110838},"pagefaults":259073,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:42:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":153404,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":279586406},"usage":{"bytes":214904955,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1047265},"rss":{"bytes":91914},"pagefaults":302252,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:40:20Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":125613,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":822782853},"usage":{"bytes":100475044,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2109932},"rss":{"bytes":278446},"pagefaults":74843,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:40:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":100046,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":362826547,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1986724},"rss":{"bytes":402801},"pagefaults":296495,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:38:30Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":40018,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":1062428344},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2294743},"rss":{"bytes":340623},"pagefaults":224530,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
您可以使用搜索 API 检查文档是否已正确索引
response = client.search( index: 'my-data-stream' ) puts response
GET /my-data-stream/_search
对数据运行以下聚合以计算一些有趣的统计数据
response = client.search( index: 'my-data-stream', body: { size: 0, aggregations: { tsid: { terms: { field: '_tsid' }, aggregations: { over_time: { date_histogram: { field: '@timestamp', fixed_interval: '1d' }, aggregations: { min: { min: { field: 'kubernetes.container.memory.usage.bytes' } }, max: { max: { field: 'kubernetes.container.memory.usage.bytes' } }, avg: { avg: { field: 'kubernetes.container.memory.usage.bytes' } } } } } } } } ) puts response
GET /my-data-stream/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } }
降采样 TSDS编辑
无法直接对 TSDS 进行降采样。您需要对其支持索引进行降采样。您可以通过运行以下命令来查看数据流的支持索引
response = client.indices.get_data_stream( name: 'my-data-stream' ) puts response
GET /_data_stream/my-data-stream
这将返回
{ "data_streams": [ { "name": "my-data-stream", "timestamp_field": { "name": "@timestamp" }, "indices": [ { "index_name": ".ds-my-data-stream-2023.07.26-000001", "index_uuid": "ltOJGmqgTVm4T-Buoe7Acg", "prefer_ilm": true, "managed_by": "Unmanaged" } ], "generation": 1, "status": "GREEN", "next_generation_managed_by": "Unmanaged", "prefer_ilm": true, "template": "my-data-stream-template", "hidden": false, "system": false, "allow_custom_routing": false, "replicated": false, "rollover_on_write": false, "time_series": { "temporal_ranges": [ { "start": "2023-07-26T09:26:42.000Z", "end": "2023-07-26T13:26:42.000Z" } ] } } ] }
在对支持索引进行降采样之前,需要对 TSDS 进行滚动并将旧索引设置为只读。
使用滚动 API滚动 TSDS
response = client.indices.rollover( alias: 'my-data-stream' ) puts response
POST /my-data-stream/_rollover/
从响应中复制 old_index
的名称。在以下步骤中,将索引名称替换为您的 old_index
的名称。
需要将旧索引设置为只读模式。运行以下请求
response = client.indices.add_block( index: '.ds-my-data-stream-2023.07.26-000001', block: 'write' ) puts response
PUT /.ds-my-data-stream-2023.07.26-000001/_block/write
接下来,使用降采样 API对索引进行降采样,将时间序列间隔设置为一小时
response = client.indices.downsample( index: '.ds-my-data-stream-2023.07.26-000001', target_index: '.ds-my-data-stream-2023.07.26-000001-downsample', body: { fixed_interval: '1h' } ) puts response
POST /.ds-my-data-stream-2023.07.26-000001/_downsample/.ds-my-data-stream-2023.07.26-000001-downsample { "fixed_interval": "1h" }
现在您可以修改数据流,并将原始索引替换为降采样后的索引
POST _data_stream/_modify { "actions": [ { "remove_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001" } }, { "add_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001-downsample" } } ] }
您现在可以删除旧的支持索引。但请注意,这将删除原始数据。如果您将来可能需要原始数据,请不要删除该索引。
查看结果编辑
重新运行之前的搜索查询(请注意,在查询降采样索引时,有一些细微差别需要注意)
response = client.search( index: 'my-data-stream' ) puts response
GET /my-data-stream/_search
具有新的降采样支持索引的 TSDS 仅包含一个文档。对于计数器,此文档将仅具有最后一个值。对于仪表,字段类型现在是 aggregate_metric_double
。您将看到基于原始采样指标的 min
、max
、sum
和 value_count
统计信息
{ "took": 2, "timed_out": false, "_shards": { "total": 4, "successful": 4, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 1, "relation": "eq" }, "max_score": 1, "hits": [ { "_index": ".ds-my-data-stream-2023.07.26-000001-downsample", "_id": "0eL0wC_4-45SnTNFAAABiZHbD4A", "_score": 1, "_source": { "@timestamp": "2023-07-26T11:00:00.000Z", "_doc_count": 10, "ingest_time": "2023-07-26T11:26:42.715Z", "kubernetes": { "container": { "cpu": { "usage": { "core": { "ns": 12828317850 }, "limit": { "pct": 0.0000277905 }, "nanocores": { "min": 38907, "max": 153404, "sum": 992677, "value_count": 10 }, "node": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": { "min": 279586406, "max": 1062428344, "sum": 7101494721, "value_count": 10 } }, "majorpagefaults": 0, "pagefaults": { "min": 74843, "max": 302252, "sum": 2061071, "value_count": 10 }, "rss": { "bytes": { "min": 91914, "max": 402801, "sum": 2389770, "value_count": 10 } }, "usage": { "bytes": { "min": 100475044, "max": 379572388, "sum": 2668170609, "value_count": 10 }, "limit": { "pct": 0.00009923134 }, "node": { "pct": 0.017700378 } }, "workingset": { "bytes": { "min": 431227, "max": 2294743, "sum": 14230488, "value_count": 10 } } }, "name": "container-name-44", "start_time": "2021-03-30T07:59:06.000Z" }, "host": "gke-apps-0", "namespace": "namespace26", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0" } } } ] } }
重新运行之前的聚合。即使聚合是在仅包含 1 个文档的降采样 TSDS 上运行的,它也会返回与之前在原始 TSDS 上运行的聚合相同的结果。
response = client.search( index: 'my-data-stream', body: { size: 0, aggregations: { tsid: { terms: { field: '_tsid' }, aggregations: { over_time: { date_histogram: { field: '@timestamp', fixed_interval: '1d' }, aggregations: { min: { min: { field: 'kubernetes.container.memory.usage.bytes' } }, max: { max: { field: 'kubernetes.container.memory.usage.bytes' } }, avg: { avg: { field: 'kubernetes.container.memory.usage.bytes' } } } } } } } } ) puts response
GET /my-data-stream/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } }
此示例演示了降采样如何在您选择的任何时间范围内显着减少为时间序列数据存储的文档数量。也可以对已经降采样的数据执行降采样,以随着时间序列数据的老化和数据分辨率变得不那么重要而进一步减少存储和相关成本。
降采样 TSDS 的推荐方法是使用 ILM。要了解更多信息,请尝试使用 ILM 运行降采样示例。