排序特征查询
编辑排序特征查询
编辑根据 rank_feature
或 rank_features
字段的数值,提升文档的相关性评分。
rank_feature
查询通常用于 bool
查询的 should
子句中,以便将其相关性评分添加到 bool
查询的其他评分中。
如果 rank_feature
或 rank_features
字段的 positive_score_impact
设置为 false
,我们建议参与查询的每个文档都应该具有该字段的值。否则,如果在 should 子句中使用 rank_feature
查询,它不会对缺少值的文档的评分添加任何内容,但会为包含特征的文档添加一些提升。这与我们想要的结果相反——因为我们认为这些特征是负面的,我们希望对包含它们的文档的排名低于缺少它们的文档。
与 function_score
查询或其他更改相关性评分的方式不同,当 track_total_hits
参数 不 为 true
时,rank_feature
查询可以有效地跳过不具竞争力的命中。这可以显著提高查询速度。
排序特征函数
编辑为了根据排序特征字段计算相关性评分,rank_feature
查询支持以下数学函数:
如果您不知道从哪里开始,我们建议使用 saturation
函数。如果未提供任何函数,则 rank_feature
查询默认使用 saturation
函数。
示例请求
编辑索引设置
编辑要使用 rank_feature
查询,您的索引必须包含 rank_feature
或 rank_features
字段映射。要了解如何为 rank_feature
查询设置索引,请尝试以下示例。
创建一个带有以下字段映射的 test
索引:
-
pagerank
,一个rank_feature
字段,用于衡量网站的重要性。 -
url_length
,一个rank_feature
字段,包含网站 URL 的长度。在此示例中,较长的 URL 与相关性呈负相关,由positive_score_impact
值为false
表示。 -
topics
,一个rank_features
字段,包含主题列表以及衡量每个文档与该主题的关联程度。
resp = client.indices.create( index="test", mappings={ "properties": { "pagerank": { "type": "rank_feature" }, "url_length": { "type": "rank_feature", "positive_score_impact": False }, "topics": { "type": "rank_features" } } }, ) print(resp)
response = client.indices.create( index: 'test', body: { mappings: { properties: { pagerank: { type: 'rank_feature' }, url_length: { type: 'rank_feature', positive_score_impact: false }, topics: { type: 'rank_features' } } } } ) puts response
const response = await client.indices.create({ index: "test", mappings: { properties: { pagerank: { type: "rank_feature", }, url_length: { type: "rank_feature", positive_score_impact: false, }, topics: { type: "rank_features", }, }, }, }); console.log(response);
PUT /test { "mappings": { "properties": { "pagerank": { "type": "rank_feature" }, "url_length": { "type": "rank_feature", "positive_score_impact": false }, "topics": { "type": "rank_features" } } } }
将多个文档索引到 test
索引。
resp = client.index( index="test", id="1", refresh=True, document={ "url": "https://en.wikipedia.org/wiki/2016_Summer_Olympics", "content": "Rio 2016", "pagerank": 50.3, "url_length": 42, "topics": { "sports": 50, "brazil": 30 } }, ) print(resp) resp1 = client.index( index="test", id="2", refresh=True, document={ "url": "https://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix", "content": "Formula One motor race held on 13 November 2016", "pagerank": 50.3, "url_length": 47, "topics": { "sports": 35, "formula one": 65, "brazil": 20 } }, ) print(resp1) resp2 = client.index( index="test", id="3", refresh=True, document={ "url": "https://en.wikipedia.org/wiki/Deadpool_(film)", "content": "Deadpool is a 2016 American superhero film", "pagerank": 50.3, "url_length": 37, "topics": { "movies": 60, "super hero": 65 } }, ) print(resp2)
response = client.index( index: 'test', id: 1, refresh: true, body: { url: 'https://en.wikipedia.org/wiki/2016_Summer_Olympics', content: 'Rio 2016', pagerank: 50.3, url_length: 42, topics: { sports: 50, brazil: 30 } } ) puts response response = client.index( index: 'test', id: 2, refresh: true, body: { url: 'https://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix', content: 'Formula One motor race held on 13 November 2016', pagerank: 50.3, url_length: 47, topics: { sports: 35, "formula one": 65, brazil: 20 } } ) puts response response = client.index( index: 'test', id: 3, refresh: true, body: { url: 'https://en.wikipedia.org/wiki/Deadpool_(film)', content: 'Deadpool is a 2016 American superhero film', pagerank: 50.3, url_length: 37, topics: { movies: 60, "super hero": 65 } } ) puts response
const response = await client.index({ index: "test", id: 1, refresh: "true", document: { url: "https://en.wikipedia.org/wiki/2016_Summer_Olympics", content: "Rio 2016", pagerank: 50.3, url_length: 42, topics: { sports: 50, brazil: 30, }, }, }); console.log(response); const response1 = await client.index({ index: "test", id: 2, refresh: "true", document: { url: "https://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix", content: "Formula One motor race held on 13 November 2016", pagerank: 50.3, url_length: 47, topics: { sports: 35, "formula one": 65, brazil: 20, }, }, }); console.log(response1); const response2 = await client.index({ index: "test", id: 3, refresh: "true", document: { url: "https://en.wikipedia.org/wiki/Deadpool_(film)", content: "Deadpool is a 2016 American superhero film", pagerank: 50.3, url_length: 37, topics: { movies: 60, "super hero": 65, }, }, }); console.log(response2);
PUT /test/_doc/1?refresh { "url": "https://en.wikipedia.org/wiki/2016_Summer_Olympics", "content": "Rio 2016", "pagerank": 50.3, "url_length": 42, "topics": { "sports": 50, "brazil": 30 } } PUT /test/_doc/2?refresh { "url": "https://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix", "content": "Formula One motor race held on 13 November 2016", "pagerank": 50.3, "url_length": 47, "topics": { "sports": 35, "formula one": 65, "brazil": 20 } } PUT /test/_doc/3?refresh { "url": "https://en.wikipedia.org/wiki/Deadpool_(film)", "content": "Deadpool is a 2016 American superhero film", "pagerank": 50.3, "url_length": 37, "topics": { "movies": 60, "super hero": 65 } }
示例查询
编辑以下查询搜索 2016
,并根据 pagerank
、url_length
和 sports
主题提升相关性评分。
resp = client.search( index="test", query={ "bool": { "must": [ { "match": { "content": "2016" } } ], "should": [ { "rank_feature": { "field": "pagerank" } }, { "rank_feature": { "field": "url_length", "boost": 0.1 } }, { "rank_feature": { "field": "topics.sports", "boost": 0.4 } } ] } }, ) print(resp)
const response = await client.search({ index: "test", query: { bool: { must: [ { match: { content: "2016", }, }, ], should: [ { rank_feature: { field: "pagerank", }, }, { rank_feature: { field: "url_length", boost: 0.1, }, }, { rank_feature: { field: "topics.sports", boost: 0.4, }, }, ], }, }, }); console.log(response);
GET /test/_search { "query": { "bool": { "must": [ { "match": { "content": "2016" } } ], "should": [ { "rank_feature": { "field": "pagerank" } }, { "rank_feature": { "field": "url_length", "boost": 0.1 } }, { "rank_feature": { "field": "topics.sports", "boost": 0.4 } } ] } } }
rank_feature
的顶级参数
编辑-
field
- (必需,字符串)用于提升相关性评分的
rank_feature
或rank_features
字段。 -
boost
-
(可选,浮点数)用于降低或增加相关性评分的浮点数。默认为
1.0
。提升值相对于默认值
1.0
。介于0
和1.0
之间的提升值会降低相关性评分。大于1.0
的值会增加相关性评分。 -
saturation
-
(可选,函数对象)饱和度函数,用于根据排序特征
field
的值来提升相关性评分。如果未提供任何函数,则rank_feature
查询默认使用saturation
函数。有关更多信息,请参见饱和度。只能提供一个函数:
saturation
、log
、sigmoid
或linear
。 -
log
-
(可选,函数对象)对数函数,用于根据排序特征
field
的值来提升相关性评分。有关更多信息,请参见对数。只能提供一个函数:
saturation
、log
、sigmoid
或linear
。 -
sigmoid
-
(可选,函数对象)Sigmoid 函数,用于根据排序特征
field
的值来提升相关性评分。有关更多信息,请参见Sigmoid。只能提供一个函数:
saturation
、log
、sigmoid
或linear
。 -
linear
-
(可选,函数对象)线性函数,用于根据排序特征
field
的值来提升相关性评分。有关更多信息,请参见线性。只能提供一个函数:
saturation
、log
、sigmoid
或linear
。
注意事项
编辑饱和度
编辑saturation
函数给出的分数等于 S / (S + pivot)
,其中 S
是排序特征字段的值,pivot
是一个可配置的支点值,以便如果 S
小于支点,则结果将小于 0.5
,否则大于 0.5
。分数始终为 (0,1)
。
如果排序特征具有负分数影响,则该函数将计算为 pivot / (S + pivot)
,当 S
增加时,该值会减小。
resp = client.search( index="test", query={ "rank_feature": { "field": "pagerank", "saturation": { "pivot": 8 } } }, ) print(resp)
const response = await client.search({ index: "test", query: { rank_feature: { field: "pagerank", saturation: { pivot: 8, }, }, }, }); console.log(response);
GET /test/_search { "query": { "rank_feature": { "field": "pagerank", "saturation": { "pivot": 8 } } } }
如果未提供 pivot
值,则 Elasticsearch 会计算一个默认值,该值等于索引中所有排序特征值的近似几何平均值。如果您没有机会训练一个好的支点值,我们建议使用此默认值。
resp = client.search( index="test", query={ "rank_feature": { "field": "pagerank", "saturation": {} } }, ) print(resp)
const response = await client.search({ index: "test", query: { rank_feature: { field: "pagerank", saturation: {}, }, }, }); console.log(response);
GET /test/_search { "query": { "rank_feature": { "field": "pagerank", "saturation": {} } } }
对数
编辑log
函数给出的分数等于 log(scaling_factor + S)
,其中 S
是排序特征字段的值,scaling_factor
是一个可配置的缩放因子。分数是无界的。
此函数仅支持具有正分数影响的排序特征。
resp = client.search( index="test", query={ "rank_feature": { "field": "pagerank", "log": { "scaling_factor": 4 } } }, ) print(resp)
const response = await client.search({ index: "test", query: { rank_feature: { field: "pagerank", log: { scaling_factor: 4, }, }, }, }); console.log(response);
GET /test/_search { "query": { "rank_feature": { "field": "pagerank", "log": { "scaling_factor": 4 } } } }
Sigmoid
编辑sigmoid
函数是 saturation
的扩展,它添加了一个可配置的指数。分数计算为 S^exp^ / (S^exp^ + pivot^exp^)
。与 saturation
函数一样,pivot
是使分数为 0.5
的 S
值,分数是 (0,1)
。
exponent
必须为正数,通常在 [0.5, 1]
之间。应通过训练计算出一个好的值。如果您没有机会这样做,我们建议您改用 saturation
函数。
resp = client.search( index="test", query={ "rank_feature": { "field": "pagerank", "sigmoid": { "pivot": 7, "exponent": 0.6 } } }, ) print(resp)
const response = await client.search({ index: "test", query: { rank_feature: { field: "pagerank", sigmoid: { pivot: 7, exponent: 0.6, }, }, }, }); console.log(response);
GET /test/_search { "query": { "rank_feature": { "field": "pagerank", "sigmoid": { "pivot": 7, "exponent": 0.6 } } } }
线性
编辑linear
函数是最简单的函数,给出的分数等于 S
的索引值,其中 S
是排序特征字段的值。如果使用 "positive_score_impact": true
对排序特征字段进行索引,则其索引值等于 S
,并四舍五入以仅保留 9 位有效位以获得精度。如果使用 "positive_score_impact": false
对排序特征字段进行索引,则其索引值等于 1/S
,并四舍五入以仅保留 9 位有效位以获得精度。
resp = client.search( index="test", query={ "rank_feature": { "field": "pagerank", "linear": {} } }, ) print(resp)
const response = await client.search({ index: "test", query: { rank_feature: { field: "pagerank", linear: {}, }, }, }); console.log(response);
GET /test/_search { "query": { "rank_feature": { "field": "pagerank", "linear": {} } } }