Geotile 网格聚合
编辑Geotile 网格聚合
编辑一种多桶聚合,将 geo_point
和 geo_shape
值分组到表示网格的桶中。生成的网格可以是稀疏的,并且仅包含具有匹配数据的单元格。每个单元格对应于许多在线地图网站使用的地图切片。每个单元格都使用“{zoom}/{x}/{y}”格式标记,其中 zoom 等于用户指定的精度。
- 高精度键具有较大的 x 和 y 范围,表示仅覆盖小区域的切片。
- 低精度键具有较小的 x 和 y 范围,表示每个切片都覆盖较大区域。
请参阅 缩放级别文档,了解精度(缩放)如何与地面大小相关。此聚合的精度可以在 0 到 29 之间(包括 0 和 29)。
长度为 29 的最高精度 geotile 生成的单元格覆盖面积小于 10 厘米 x 10 厘米的陆地,因此高精度请求在 RAM 和结果大小方面可能非常昂贵。请参阅下面的示例,了解如何在请求高细节级别之前先将聚合过滤到较小的地理区域。
您只能使用 geotile_grid
来聚合显式映射的 geo_point
或 geo_shape
字段。如果 geo_point
字段包含数组,则 geotile_grid
会聚合所有数组值。
简单的低精度请求
编辑resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "geo_point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (4.912350 52.374081)", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (4.901618 52.369219)", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (4.914722 52.371667)", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (4.405200 51.222900)", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (2.336389 48.861111)", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (2.327000 48.860000)", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", aggregations={ "large-grid": { "geotile_grid": { "field": "location", "precision": 8 } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'geo_point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (4.912350 52.374081)', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (4.901618 52.369219)', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (4.914722 52.371667)', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (4.405200 51.222900)', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (2.336389 48.861111)', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (2.327000 48.860000)', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { aggregations: { "large-grid": { geotile_grid: { field: 'location', precision: 8 } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "geo_point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (4.912350 52.374081)", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (4.901618 52.369219)", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (4.914722 52.371667)", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (4.405200 51.222900)", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (2.336389 48.861111)", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (2.327000 48.860000)", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, aggregations: { "large-grid": { geotile_grid: { field: "location", precision: 8, }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "geo_point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (4.912350 52.374081)", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (4.901618 52.369219)", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (4.914722 52.371667)", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (4.405200 51.222900)", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (2.336389 48.861111)", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (2.327000 48.860000)", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "aggregations": { "large-grid": { "geotile_grid": { "field": "location", "precision": 8 } } } }
响应
{ ... "aggregations": { "large-grid": { "buckets": [ { "key": "8/131/84", "doc_count": 3 }, { "key": "8/129/88", "doc_count": 2 }, { "key": "8/131/85", "doc_count": 1 } ] } } }
高精度请求
编辑当请求详细的桶(通常用于显示“放大”的地图)时,应应用诸如 geo_bounding_box 之类的过滤器来缩小主题区域。否则,可能会创建和返回数百万个桶。
resp = client.search( index="museums", size="0", aggregations={ "zoomed-in": { "filter": { "geo_bounding_box": { "location": { "top_left": "POINT (4.9 52.4)", "bottom_right": "POINT (5.0 52.3)" } } }, "aggregations": { "zoom1": { "geotile_grid": { "field": "location", "precision": 22 } } } } }, ) print(resp)
response = client.search( index: 'museums', size: 0, body: { aggregations: { "zoomed-in": { filter: { geo_bounding_box: { location: { top_left: 'POINT (4.9 52.4)', bottom_right: 'POINT (5.0 52.3)' } } }, aggregations: { "zoom1": { geotile_grid: { field: 'location', precision: 22 } } } } } } ) puts response
const response = await client.search({ index: "museums", size: 0, aggregations: { "zoomed-in": { filter: { geo_bounding_box: { location: { top_left: "POINT (4.9 52.4)", bottom_right: "POINT (5.0 52.3)", }, }, }, aggregations: { zoom1: { geotile_grid: { field: "location", precision: 22, }, }, }, }, }, }); console.log(response);
POST /museums/_search?size=0 { "aggregations": { "zoomed-in": { "filter": { "geo_bounding_box": { "location": { "top_left": "POINT (4.9 52.4)", "bottom_right": "POINT (5.0 52.3)" } } }, "aggregations": { "zoom1": { "geotile_grid": { "field": "location", "precision": 22 } } } } } }
响应
{ ... "aggregations": { "zoomed-in": { "doc_count": 3, "zoom1": { "buckets": [ { "key": "22/2154412/1378379", "doc_count": 1 }, { "key": "22/2154385/1378332", "doc_count": 1 }, { "key": "22/2154259/1378425", "doc_count": 1 } ] } } } }
使用其他边界框筛选的请求
编辑geotile_grid
聚合支持可选的 bounds
参数,该参数将考虑的单元格限制为与提供的边界相交的单元格。bounds
参数接受与地理边界框查询相同的边界框格式。此边界框可以与额外的 geo_bounding_box
查询一起使用,也可以不使用,以便在聚合之前过滤点。它是一个独立的边界框,可以与聚合上下文中定义的任何其他 geo_bounding_box
查询相交、相等或不相交。
resp = client.search( index="museums", size="0", aggregations={ "tiles-in-bounds": { "geotile_grid": { "field": "location", "precision": 22, "bounds": { "top_left": "POINT (4.9 52.4)", "bottom_right": "POINT (5.0 52.3)" } } } }, ) print(resp)
response = client.search( index: 'museums', size: 0, body: { aggregations: { "tiles-in-bounds": { geotile_grid: { field: 'location', precision: 22, bounds: { top_left: 'POINT (4.9 52.4)', bottom_right: 'POINT (5.0 52.3)' } } } } } ) puts response
const response = await client.search({ index: "museums", size: 0, aggregations: { "tiles-in-bounds": { geotile_grid: { field: "location", precision: 22, bounds: { top_left: "POINT (4.9 52.4)", bottom_right: "POINT (5.0 52.3)", }, }, }, }, }); console.log(response);
POST /museums/_search?size=0 { "aggregations": { "tiles-in-bounds": { "geotile_grid": { "field": "location", "precision": 22, "bounds": { "top_left": "POINT (4.9 52.4)", "bottom_right": "POINT (5.0 52.3)" } } } } }
响应
{ ... "aggregations": { "tiles-in-bounds": { "buckets": [ { "key": "22/2154412/1378379", "doc_count": 1 }, { "key": "22/2154385/1378332", "doc_count": 1 }, { "key": "22/2154259/1378425", "doc_count": 1 } ] } } }
聚合 geo_shape
字段
编辑对 Geoshape 字段进行聚合的工作方式与点几乎相同,只是单个形状可以在多个切片中进行计数。如果形状的任何部分与该切片相交,则该形状将计入匹配值的计数。下面是演示此情况的图像
选项
编辑
field |
(必需,字符串)包含已索引的地理点或地理形状值的字段。必须显式映射为 |
precision |
(可选,整数)用于定义结果中单元格/桶的键的整数缩放。默认为 |
bounds |
(可选,对象)用于筛选每个桶中的地理点或地理形状的边界框。接受与地理边界框查询相同的边界框格式。 |
size |
(可选,整数)要返回的最大桶数。默认为 10,000。当结果被截断时,桶会根据其中包含的文档量进行优先级排序。 |
shard_size |
(可选,整数)从每个分片返回的桶数。默认为 |