地理边界聚合
编辑地理边界聚合
编辑一种指标聚合,用于计算包含 地理坐标点 或 地理形状 字段所有值的地理边界框。
示例
resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "geo_point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (4.912350 52.374081)", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (4.901618 52.369219)", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (4.914722 52.371667)", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (4.405200 51.222900)", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (2.336389 48.861111)", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (2.327000 48.860000)", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", query={ "match": { "name": "musée" } }, aggs={ "viewport": { "geo_bounds": { "field": "location", "wrap_longitude": True } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'geo_point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (4.912350 52.374081)', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (4.901618 52.369219)', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (4.914722 52.371667)', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (4.405200 51.222900)', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (2.336389 48.861111)', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (2.327000 48.860000)', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { query: { match: { name: 'musée' } }, aggregations: { viewport: { geo_bounds: { field: 'location', wrap_longitude: true } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "geo_point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (4.912350 52.374081)", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (4.901618 52.369219)", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (4.914722 52.371667)", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (4.405200 51.222900)", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (2.336389 48.861111)", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (2.327000 48.860000)", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, query: { match: { name: "musée", }, }, aggs: { viewport: { geo_bounds: { field: "location", wrap_longitude: true, }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "geo_point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (4.912350 52.374081)", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (4.901618 52.369219)", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (4.914722 52.371667)", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (4.405200 51.222900)", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (2.336389 48.861111)", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (2.327000 48.860000)", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "query": { "match": { "name": "musée" } }, "aggs": { "viewport": { "geo_bounds": { "field": "location", "wrap_longitude": true } } } }
上面的聚合演示了如何计算名称与 “musée” 匹配的所有文档的 location 字段的边界框。
上面聚合的响应
{ ... "aggregations": { "viewport": { "bounds": { "top_left": { "lat": 48.86111099738628, "lon": 2.3269999679178 }, "bottom_right": { "lat": 48.85999997612089, "lon": 2.3363889567553997 } } } } }
对 geo_shape
字段进行地理边界聚合
编辑地理边界聚合也支持 geo_shape
字段。
如果 wrap_longitude
设置为 true
(默认值),则边界框可以与国际日期变更线重叠,并返回 top_left
经度大于 top_right
经度的边界。
例如,地理边界框的右上角经度通常会大于左下角经度。但是,当区域跨越 180° 子午线时,左下角经度的值将大于右上角经度的值。有关更多信息,请参阅开放地理空间联盟网站上的 地理边界框。
示例
resp = client.indices.create( index="places", mappings={ "properties": { "geometry": { "type": "geo_shape" } } }, ) print(resp) resp1 = client.bulk( index="places", refresh=True, operations=[ { "index": { "_id": 1 } }, { "name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" }, { "index": { "_id": 2 } }, { "name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ], ) print(resp1) resp2 = client.search( index="places", size="0", aggs={ "viewport": { "geo_bounds": { "field": "geometry" } } }, ) print(resp2)
response = client.indices.create( index: 'places', body: { mappings: { properties: { geometry: { type: 'geo_shape' } } } } ) puts response response = client.bulk( index: 'places', refresh: true, body: [ { index: { _id: 1 } }, { name: 'NEMO Science Museum', geometry: 'POINT(4.912350 52.374081)' }, { index: { _id: 2 } }, { name: 'Sportpark De Weeren', geometry: { type: 'Polygon', coordinates: [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ] ) puts response response = client.search( index: 'places', size: 0, body: { aggregations: { viewport: { geo_bounds: { field: 'geometry' } } } } ) puts response
const response = await client.indices.create({ index: "places", mappings: { properties: { geometry: { type: "geo_shape", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "places", refresh: "true", operations: [ { index: { _id: 1, }, }, { name: "NEMO Science Museum", geometry: "POINT(4.912350 52.374081)", }, { index: { _id: 2, }, }, { name: "Sportpark De Weeren", geometry: { type: "Polygon", coordinates: [ [ [4.965305328369141, 52.39347642069457], [4.966979026794433, 52.391721758934835], [4.969425201416015, 52.39238958618537], [4.967944622039794, 52.39420969150824], [4.965305328369141, 52.39347642069457], ], ], }, }, ], }); console.log(response1); const response2 = await client.search({ index: "places", size: 0, aggs: { viewport: { geo_bounds: { field: "geometry", }, }, }, }); console.log(response2);
PUT /places { "mappings": { "properties": { "geometry": { "type": "geo_shape" } } } } POST /places/_bulk?refresh {"index":{"_id":1}} {"name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" } {"index":{"_id":2}} {"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } POST /places/_search?size=0 { "aggs": { "viewport": { "geo_bounds": { "field": "geometry" } } } }
{ ... "aggregations": { "viewport": { "bounds": { "top_left": { "lat": 52.39420966710895, "lon": 4.912349972873926 }, "bottom_right": { "lat": 52.374080987647176, "lon": 4.969425117596984 } } } } }