- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
扩展统计聚合
编辑扩展统计聚合
编辑一个 多值
指标聚合,用于计算从聚合文档中提取的数值的统计信息。
extended_stats
聚合是 stats
聚合的扩展版本,其中添加了诸如 sum_of_squares
、variance
、std_deviation
和 std_deviation_bounds
之类的额外指标。
假设数据由表示学生考试成绩(介于 0 和 100 之间)的文档组成
resp = client.search( index="exams", size=0, aggs={ "grades_stats": { "extended_stats": { "field": "grade" } } }, ) print(resp)
response = client.search( index: 'exams', body: { size: 0, aggregations: { grades_stats: { extended_stats: { field: 'grade' } } } } ) puts response
const response = await client.search({ index: "exams", size: 0, aggs: { grades_stats: { extended_stats: { field: "grade", }, }, }, }); console.log(response);
GET /exams/_search { "size": 0, "aggs": { "grades_stats": { "extended_stats": { "field": "grade" } } } }
以上聚合计算所有文档的成绩统计信息。聚合类型是 extended_stats
,field
设置定义了将计算统计信息的文档的数值字段。以上将返回以下内容
std_deviation
和 variance
作为总体指标计算,因此它们始终与 std_deviation_population
和 variance_population
相同。
{ ... "aggregations": { "grades_stats": { "count": 2, "min": 50.0, "max": 100.0, "avg": 75.0, "sum": 150.0, "sum_of_squares": 12500.0, "variance": 625.0, "variance_population": 625.0, "variance_sampling": 1250.0, "std_deviation": 25.0, "std_deviation_population": 25.0, "std_deviation_sampling": 35.35533905932738, "std_deviation_bounds": { "upper": 125.0, "lower": 25.0, "upper_population": 125.0, "lower_population": 25.0, "upper_sampling": 145.71067811865476, "lower_sampling": 4.289321881345245 } } } }
聚合的名称(上面的 grades_stats
)也用作从返回的响应中检索聚合结果的键。
标准差范围
编辑默认情况下,extended_stats
指标将返回一个名为 std_deviation_bounds
的对象,该对象提供了与平均值的正负两个标准差的间隔。这可以有效地可视化数据的方差。如果需要不同的边界,例如三个标准差,可以在请求中设置 sigma
resp = client.search( index="exams", size=0, aggs={ "grades_stats": { "extended_stats": { "field": "grade", "sigma": 3 } } }, ) print(resp)
response = client.search( index: 'exams', body: { size: 0, aggregations: { grades_stats: { extended_stats: { field: 'grade', sigma: 3 } } } } ) puts response
const response = await client.search({ index: "exams", size: 0, aggs: { grades_stats: { extended_stats: { field: "grade", sigma: 3, }, }, }, }); console.log(response);
GET /exams/_search { "size": 0, "aggs": { "grades_stats": { "extended_stats": { "field": "grade", "sigma": 3 } } } }
sigma
可以是任何非负双精度数,这意味着您可以请求诸如 1.5
之类的非整数值。0
的值是有效的,但仅会为 upper
和 lower
边界返回平均值。
upper
和 lower
边界作为总体指标计算,因此它们始终与 upper_population
和 lower_population
相同。
标准差和范围需要正态性
默认情况下会显示标准差及其范围,但并非总是适用于所有数据集。您的数据必须呈正态分布,这些指标才有意义。标准差背后的统计信息假设数据呈正态分布,因此,如果您的数据严重向左或向右倾斜,则返回的值将具有误导性。
脚本
编辑如果您需要在未索引的值上进行聚合,请使用运行时字段。假设我们发现我们一直在处理的成绩是针对高于学生水平的考试的,并且我们想要“纠正”它
resp = client.search( index="exams", size=0, runtime_mappings={ "grade.corrected": { "type": "double", "script": { "source": "emit(Math.min(100, doc['grade'].value * params.correction))", "params": { "correction": 1.2 } } } }, aggs={ "grades_stats": { "extended_stats": { "field": "grade.corrected" } } }, ) print(resp)
response = client.search( index: 'exams', body: { size: 0, runtime_mappings: { 'grade.corrected' => { type: 'double', script: { source: "emit(Math.min(100, doc['grade'].value * params.correction))", params: { correction: 1.2 } } } }, aggregations: { grades_stats: { extended_stats: { field: 'grade.corrected' } } } } ) puts response
const response = await client.search({ index: "exams", size: 0, runtime_mappings: { "grade.corrected": { type: "double", script: { source: "emit(Math.min(100, doc['grade'].value * params.correction))", params: { correction: 1.2, }, }, }, }, aggs: { grades_stats: { extended_stats: { field: "grade.corrected", }, }, }, }); console.log(response);
GET /exams/_search { "size": 0, "runtime_mappings": { "grade.corrected": { "type": "double", "script": { "source": "emit(Math.min(100, doc['grade'].value * params.correction))", "params": { "correction": 1.2 } } } }, "aggs": { "grades_stats": { "extended_stats": { "field": "grade.corrected" } } } }
缺失值
编辑missing
参数定义了应该如何处理缺少值的文档。默认情况下,它们将被忽略,但是也可以将它们视为具有值。
resp = client.search( index="exams", size=0, aggs={ "grades_stats": { "extended_stats": { "field": "grade", "missing": 0 } } }, ) print(resp)
response = client.search( index: 'exams', body: { size: 0, aggregations: { grades_stats: { extended_stats: { field: 'grade', missing: 0 } } } } ) puts response
const response = await client.search({ index: "exams", size: 0, aggs: { grades_stats: { extended_stats: { field: "grade", missing: 0, }, }, }, }); console.log(response);