- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
直方图字段类型
编辑直方图字段类型
编辑一个用于存储表示直方图的预聚合数值数据的字段。此数据使用两个配对的数组定义
因为 values
数组中的元素对应于 count
数组中相同位置的元素,所以这两个数组的长度必须相同。
- 每个文档的
histogram
字段只能存储一对values
和count
数组。不支持嵌套数组。 -
histogram
字段不支持排序。
用途
编辑histogram
字段主要用于聚合。为了更容易地进行聚合,histogram
字段数据存储为二进制 文档值,而不是索引。它的大小(以字节为单位)最多为 13 * numValues
,其中 numValues
是提供的数组的长度。
由于数据未被索引,因此您只能将 histogram
字段用于以下聚合和查询
- min 聚合
- max 聚合
- sum 聚合
- value_count 聚合
- avg 聚合
- percentiles 聚合
- percentile ranks 聚合
- boxplot 聚合
- histogram 聚合
- range 聚合
- exists 查询
构建直方图
编辑当使用直方图作为聚合的一部分时,结果的准确性将取决于直方图的构建方式。重要的是要考虑将用于构建它的百分位数聚合模式。一些可能性包括
- 对于 T-Digest 模式,
values
数组表示平均质心位置,counts
数组表示归因于每个质心的值的数量。如果算法已经开始近似百分位数,则这种不准确性会延续到直方图中。 - 对于 高动态范围 (HDR) 直方图模式,
values
数组表示每个桶间隔的固定上限,counts
数组表示归因于每个间隔的值的数量。此实现保持固定的最坏情况百分比误差(指定为有效数字),因此在生成直方图时使用的值将是您在聚合时可以达到的最大精度。
直方图字段是“算法无关的”,不存储特定于 T-Digest 或 HDRHistogram 的数据。虽然这意味着该字段在技术上可以使用任一算法进行聚合,但在实践中,用户应选择一种算法并以该方式索引数据(例如,T-Digest 的质心或 HDRHistogram 的间隔)以确保最佳精度。
合成 _source
编辑合成 _source
仅对 TSDB 索引(将 index.mode
设置为 time_series
的索引)普遍可用。对于其他索引,合成 _source
处于技术预览状态。技术预览中的功能可能会在未来的版本中更改或删除。Elastic 将努力解决任何问题,但技术预览中的功能不受官方 GA 功能的支持 SLA 的约束。
histogram
字段在其默认配置中支持 合成 _source
。
为了节省空间,零计数桶不会存储在直方图文档值中。因此,当在启用合成源的索引中索引直方图字段时,索引包含零计数桶的直方图会导致在取回直方图时缺少桶。
示例
编辑以下 创建索引 API 请求创建了一个包含两个字段映射的新索引
-
my_histogram
,一个用于存储百分位数数据的histogram
字段 -
my_text
,一个用于存储直方图标题的keyword
字段
resp = client.indices.create( index="my-index-000001", mappings={ "properties": { "my_histogram": { "type": "histogram" }, "my_text": { "type": "keyword" } } }, ) print(resp)
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { my_histogram: { type: 'histogram' }, my_text: { type: 'keyword' } } } } ) puts response
const response = await client.indices.create({ index: "my-index-000001", mappings: { properties: { my_histogram: { type: "histogram", }, my_text: { type: "keyword", }, }, }, }); console.log(response);
PUT my-index-000001 { "mappings" : { "properties" : { "my_histogram" : { "type" : "histogram" }, "my_text" : { "type" : "keyword" } } } }
以下 索引 API 请求为两个直方图存储了预聚合数据:histogram_1
和 histogram_2
。
resp = client.index( index="my-index-000001", id="1", document={ "my_text": "histogram_1", "my_histogram": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 3, 7, 23, 12, 6 ] } }, ) print(resp) resp1 = client.index( index="my-index-000001", id="2", document={ "my_text": "histogram_2", "my_histogram": { "values": [ 0.1, 0.25, 0.35, 0.4, 0.45, 0.5 ], "counts": [ 8, 17, 8, 7, 6, 2 ] } }, ) print(resp1)
response = client.index( index: 'my-index-000001', id: 1, body: { my_text: 'histogram_1', my_histogram: { values: [ 0.1, 0.2, 0.3, 0.4, 0.5 ], counts: [ 3, 7, 23, 12, 6 ] } } ) puts response response = client.index( index: 'my-index-000001', id: 2, body: { my_text: 'histogram_2', my_histogram: { values: [ 0.1, 0.25, 0.35, 0.4, 0.45, 0.5 ], counts: [ 8, 17, 8, 7, 6, 2 ] } } ) puts response
const response = await client.index({ index: "my-index-000001", id: 1, document: { my_text: "histogram_1", my_histogram: { values: [0.1, 0.2, 0.3, 0.4, 0.5], counts: [3, 7, 23, 12, 6], }, }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 2, document: { my_text: "histogram_2", my_histogram: { values: [0.1, 0.25, 0.35, 0.4, 0.45, 0.5], counts: [8, 17, 8, 7, 6, 2], }, }, }); console.log(response1);
PUT my-index-000001/_doc/1 { "my_text" : "histogram_1", "my_histogram" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [3, 7, 23, 12, 6] } } PUT my-index-000001/_doc/2 { "my_text" : "histogram_2", "my_histogram" : { "values" : [0.1, 0.25, 0.35, 0.4, 0.45, 0.5], "counts" : [8, 17, 8, 7, 6, 2] } }
每个桶的值。数组中的值被视为双精度值,并且必须按递增顺序给出。对于 T-Digest 直方图,此值表示平均值。对于 HDR 直方图,这表示迭代到的值。 |
|
每个桶的计数。数组中的值被视为长整型值,并且必须为正数或零。负值将被拒绝。桶和计数之间的关系由数组中的位置给出。 |
On this page