导数聚合

编辑

一个父级管道聚合,用于计算父级直方图(或 date_histogram)聚合中指定指标的导数。指定的指标必须是数字,并且封闭的直方图的 min_doc_count 必须设置为 0histogram 聚合的默认值)。

语法

编辑

一个 derivative 聚合单独使用时看起来像这样

"derivative": {
  "buckets_path": "the_sum"
}

表 61. derivative 参数

参数名称 描述 必需 默认值

buckets_path

我们希望查找导数的桶的路径(有关详细信息,请参阅 buckets_path 语法

必需

gap_policy

在数据中发现间隙时应用的策略(有关详细信息,请参阅 处理数据中的间隙

可选

skip

format

用于输出值的 DecimalFormat 模式。如果指定,格式化的值将在聚合的 value_as_string 属性中返回

可选

null

一阶导数

编辑

以下代码片段计算每月总 sales 的导数

resp = client.search(
    index="sales",
    size=0,
    aggs={
        "sales_per_month": {
            "date_histogram": {
                "field": "date",
                "calendar_interval": "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_deriv": {
                    "derivative": {
                        "buckets_path": "sales"
                    }
                }
            }
        }
    },
)
print(resp)
response = client.search(
  index: 'sales',
  body: {
    size: 0,
    aggregations: {
      sales_per_month: {
        date_histogram: {
          field: 'date',
          calendar_interval: 'month'
        },
        aggregations: {
          sales: {
            sum: {
              field: 'price'
            }
          },
          sales_deriv: {
            derivative: {
              buckets_path: 'sales'
            }
          }
        }
      }
    }
  }
)
puts response
const response = await client.search({
  index: "sales",
  size: 0,
  aggs: {
    sales_per_month: {
      date_histogram: {
        field: "date",
        calendar_interval: "month",
      },
      aggs: {
        sales: {
          sum: {
            field: "price",
          },
        },
        sales_deriv: {
          derivative: {
            buckets_path: "sales",
          },
        },
      },
    },
  },
});
console.log(response);
POST /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "sales": {
          "sum": {
            "field": "price"
          }
        },
        "sales_deriv": {
          "derivative": {
            "buckets_path": "sales" 
          }
        }
      }
    }
  }
}

buckets_path 指示此导数聚合使用 sales 聚合的输出来计算导数

以下可能是响应

{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               } 
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "sales_deriv": {
                  "value": -490.0 
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2, 
               "sales": {
                  "value": 375.0
               },
               "sales_deriv": {
                  "value": 315.0
               }
            }
         ]
      }
   }
}

第一个桶没有导数,因为我们需要至少 2 个数据点来计算导数

导数值的单位由 sales 聚合和父直方图隐式定义,因此在这种情况下,假设 price 字段的单位为 $,则单位为 $/月。

桶中的文档数由 doc_count 表示

二阶导数

编辑

可以通过将导数管道聚合链接到另一个导数管道聚合的结果来计算二阶导数,如下例所示,它将计算每月总销售额的一阶导数和二阶导数

resp = client.search(
    index="sales",
    size=0,
    aggs={
        "sales_per_month": {
            "date_histogram": {
                "field": "date",
                "calendar_interval": "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_deriv": {
                    "derivative": {
                        "buckets_path": "sales"
                    }
                },
                "sales_2nd_deriv": {
                    "derivative": {
                        "buckets_path": "sales_deriv"
                    }
                }
            }
        }
    },
)
print(resp)
response = client.search(
  index: 'sales',
  body: {
    size: 0,
    aggregations: {
      sales_per_month: {
        date_histogram: {
          field: 'date',
          calendar_interval: 'month'
        },
        aggregations: {
          sales: {
            sum: {
              field: 'price'
            }
          },
          sales_deriv: {
            derivative: {
              buckets_path: 'sales'
            }
          },
          "sales_2nd_deriv": {
            derivative: {
              buckets_path: 'sales_deriv'
            }
          }
        }
      }
    }
  }
)
puts response
const response = await client.search({
  index: "sales",
  size: 0,
  aggs: {
    sales_per_month: {
      date_histogram: {
        field: "date",
        calendar_interval: "month",
      },
      aggs: {
        sales: {
          sum: {
            field: "price",
          },
        },
        sales_deriv: {
          derivative: {
            buckets_path: "sales",
          },
        },
        sales_2nd_deriv: {
          derivative: {
            buckets_path: "sales_deriv",
          },
        },
      },
    },
  },
});
console.log(response);
POST /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "sales": {
          "sum": {
            "field": "price"
          }
        },
        "sales_deriv": {
          "derivative": {
            "buckets_path": "sales"
          }
        },
        "sales_2nd_deriv": {
          "derivative": {
            "buckets_path": "sales_deriv" 
          }
        }
      }
    }
  }
}

第二个导数的 buckets_path 指向第一个导数的名称

以下可能是响应

{
   "took": 50,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               } 
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "sales_deriv": {
                  "value": -490.0
               } 
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               },
               "sales_deriv": {
                  "value": 315.0
               },
               "sales_2nd_deriv": {
                  "value": 805.0
               }
            }
         ]
      }
   }
}

前两个桶没有二阶导数,因为我们需要第一个导数中的至少 2 个数据点来计算二阶导数

单位

编辑

导数聚合允许指定导数值的单位。这会在响应中返回一个额外的字段 normalized_value,它以所需的 x 轴单位报告导数值。在下面的示例中,我们计算每月总销售额的导数,但要求销售额的导数以每天的销售额为单位

resp = client.search(
    index="sales",
    size=0,
    aggs={
        "sales_per_month": {
            "date_histogram": {
                "field": "date",
                "calendar_interval": "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_deriv": {
                    "derivative": {
                        "buckets_path": "sales",
                        "unit": "day"
                    }
                }
            }
        }
    },
)
print(resp)
response = client.search(
  index: 'sales',
  body: {
    size: 0,
    aggregations: {
      sales_per_month: {
        date_histogram: {
          field: 'date',
          calendar_interval: 'month'
        },
        aggregations: {
          sales: {
            sum: {
              field: 'price'
            }
          },
          sales_deriv: {
            derivative: {
              buckets_path: 'sales',
              unit: 'day'
            }
          }
        }
      }
    }
  }
)
puts response
const response = await client.search({
  index: "sales",
  size: 0,
  aggs: {
    sales_per_month: {
      date_histogram: {
        field: "date",
        calendar_interval: "month",
      },
      aggs: {
        sales: {
          sum: {
            field: "price",
          },
        },
        sales_deriv: {
          derivative: {
            buckets_path: "sales",
            unit: "day",
          },
        },
      },
    },
  },
});
console.log(response);
POST /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "sales": {
          "sum": {
            "field": "price"
          }
        },
        "sales_deriv": {
          "derivative": {
            "buckets_path": "sales",
            "unit": "day" 
          }
        }
      }
    }
  }
}

unit 指定导数计算的 x 轴使用的单位

以下可能是响应

{
   "took": 50,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               } 
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "sales_deriv": {
                  "value": -490.0, 
                  "normalized_value": -15.806451612903226 
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               },
               "sales_deriv": {
                  "value": 315.0,
                  "normalized_value": 11.25
               }
            }
         ]
      }
   }
}

value 以原始单位每月报告

normalized_value 以所需的单位每天报告