- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
Knn 查询
编辑Knn 查询
编辑根据相似性度量,查找与查询向量最接近的 k 个向量。knn 查询通过对索引的 dense_vectors 进行近似搜索来查找最近的向量。执行近似 kNN 搜索的首选方法是通过搜索请求的顶层 knn 部分。knn 查询保留给专家使用,在需要将此查询与其他查询结合使用时。
示例请求
编辑resp = client.indices.create( index="my-image-index", mappings={ "properties": { "image-vector": { "type": "dense_vector", "dims": 3, "index": True, "similarity": "l2_norm" }, "file-type": { "type": "keyword" }, "title": { "type": "text" } } }, ) print(resp)
response = client.indices.create( index: 'my-image-index', body: { mappings: { properties: { "image-vector": { type: 'dense_vector', dims: 3, index: true, similarity: 'l2_norm' }, "file-type": { type: 'keyword' }, title: { type: 'text' } } } } ) puts response
const response = await client.indices.create({ index: "my-image-index", mappings: { properties: { "image-vector": { type: "dense_vector", dims: 3, index: true, similarity: "l2_norm", }, "file-type": { type: "keyword", }, title: { type: "text", }, }, }, }); console.log(response);
PUT my-image-index { "mappings": { "properties": { "image-vector": { "type": "dense_vector", "dims": 3, "index": true, "similarity": "l2_norm" }, "file-type": { "type": "keyword" }, "title": { "type": "text" } } } }
-
索引您的数据。
resp = client.bulk( index="my-image-index", refresh=True, operations=[ { "index": { "_id": "1" } }, { "image-vector": [ 1, 5, -20 ], "file-type": "jpg", "title": "mountain lake" }, { "index": { "_id": "2" } }, { "image-vector": [ 42, 8, -15 ], "file-type": "png", "title": "frozen lake" }, { "index": { "_id": "3" } }, { "image-vector": [ 15, 11, 23 ], "file-type": "jpg", "title": "mountain lake lodge" } ], ) print(resp)
response = client.bulk( index: 'my-image-index', refresh: true, body: [ { index: { _id: '1' } }, { "image-vector": [ 1, 5, -20 ], "file-type": 'jpg', title: 'mountain lake' }, { index: { _id: '2' } }, { "image-vector": [ 42, 8, -15 ], "file-type": 'png', title: 'frozen lake' }, { index: { _id: '3' } }, { "image-vector": [ 15, 11, 23 ], "file-type": 'jpg', title: 'mountain lake lodge' } ] ) puts response
const response = await client.bulk({ index: "my-image-index", refresh: "true", operations: [ { index: { _id: "1", }, }, { "image-vector": [1, 5, -20], "file-type": "jpg", title: "mountain lake", }, { index: { _id: "2", }, }, { "image-vector": [42, 8, -15], "file-type": "png", title: "frozen lake", }, { index: { _id: "3", }, }, { "image-vector": [15, 11, 23], "file-type": "jpg", title: "mountain lake lodge", }, ], }); console.log(response);
POST my-image-index/_bulk?refresh=true { "index": { "_id": "1" } } { "image-vector": [1, 5, -20], "file-type": "jpg", "title": "mountain lake" } { "index": { "_id": "2" } } { "image-vector": [42, 8, -15], "file-type": "png", "title": "frozen lake"} { "index": { "_id": "3" } } { "image-vector": [15, 11, 23], "file-type": "jpg", "title": "mountain lake lodge" }
-
使用
knn
查询运行搜索,请求每个分片中最接近的 10 个向量,然后合并分片结果以获得全局前 3 个结果。resp = client.search( index="my-image-index", size=3, query={ "knn": { "field": "image-vector", "query_vector": [ -5, 9, -12 ], "k": 10 } }, ) print(resp)
const response = await client.search({ index: "my-image-index", size: 3, query: { knn: { field: "image-vector", query_vector: [-5, 9, -12], k: 10, }, }, }); console.log(response);
POST my-image-index/_search { "size" : 3, "query" : { "knn": { "field": "image-vector", "query_vector": [-5, 9, -12], "k": 10 } } }
knn
的顶层参数
编辑-
field
-
(必需,字符串) 要搜索的向量字段的名称。必须是启用了索引的
dense_vector
字段。 -
query_vector
-
(可选,浮点数组或字符串) 查询向量。必须与您要搜索的向量字段具有相同的维度数量。必须是浮点数组或十六进制编码的字节向量。必须提供此项或
query_vector_builder
。 -
query_vector_builder
-
(可选,对象) 查询向量构建器。一个配置对象,指示如何在执行请求之前构建 query_vector。您必须提供
query_vector_builder
或query_vector
,但不能同时提供两者。请参阅执行语义搜索以了解更多信息。 -
k
-
(可选,整数) 要从每个分片返回的最近邻居的数量。Elasticsearch 从每个分片收集
k
个结果,然后合并它们以找到全局顶级结果。此值必须小于或等于num_candidates
。默认为num_candidates
。 -
num_candidates
-
(可选,整数) 在执行 knn 搜索时,每个分片要考虑的最近邻居候选的数量。不能超过 10,000。增加
num_candidates
往往会提高最终结果的准确性。如果设置了k
,则默认为1.5 * k
,如果未设置k
,则默认为1.5 * size
。 -
filter
-
(可选,查询对象) 用于过滤可以匹配的文档的查询。kNN 搜索将返回也匹配此过滤器的顶级文档。该值可以是单个查询或查询列表。如果未提供
filter
,则允许所有文档匹配。过滤器是一个预过滤器,这意味着它在近似 kNN 搜索期间应用,以确保返回
num_candidates
个匹配文档。 -
similarity
-
(可选,浮点数) 文档被视为匹配项所需的最小相似度。计算的相似度值与使用的原始
相似度
有关,而不是文档分数。然后,根据相似度
对匹配的文档进行评分,并应用提供的boost
。 -
boost
-
(可选,浮点数) 用于乘以匹配文档的分数的浮点数。此值不能为负数。默认为
1.0
。 -
_name
-
(可选,字符串) 用于标识查询的名称字段
knn 查询中的预过滤器和后过滤器
编辑有两种方法可以过滤匹配 kNN 查询的文档
-
预过滤 – 过滤器在近似 kNN 搜索期间应用,以确保返回
k
个匹配的文档。 - 后过滤 – 过滤器在近似 kNN 搜索完成后应用,这会导致结果少于 k 个,即使有足够的匹配文档。
通过 knn
查询的 filter
参数支持预过滤。来自 别名 的过滤器也作为预过滤器应用。
在查询 DSL 树中找到的所有其他过滤器都作为后过滤器应用。例如,knn
查询找到具有最近向量的前 3 个文档 (k=3),这些文档与 term
过滤器组合,该过滤器是后过滤的。最终文档集将仅包含一个通过后过滤器的文档。
resp = client.search( index="my-image-index", size=10, query={ "bool": { "must": { "knn": { "field": "image-vector", "query_vector": [ -5, 9, -12 ], "k": 3 } }, "filter": { "term": { "file-type": "png" } } } }, ) print(resp)
const response = await client.search({ index: "my-image-index", size: 10, query: { bool: { must: { knn: { field: "image-vector", query_vector: [-5, 9, -12], k: 3, }, }, filter: { term: { "file-type": "png", }, }, }, }, }); console.log(response);
POST my-image-index/_search { "size" : 10, "query" : { "bool" : { "must" : { "knn": { "field": "image-vector", "query_vector": [-5, 9, -12], "k": 3 } }, "filter" : { "term" : { "file-type" : "png" } } } } }
knn 查询的混合搜索
编辑Knn 查询可以用作混合搜索的一部分,其中 knn 查询与其他词法查询结合使用。例如,以下查询查找 title
与 mountain lake
匹配的文档,并将它们与图像向量与 query_vector
最接近的前 10 个文档组合。然后对组合的文档进行评分,并返回前 3 个评分最高的文档。
+
resp = client.search( index="my-image-index", size=3, query={ "bool": { "should": [ { "match": { "title": { "query": "mountain lake", "boost": 1 } } }, { "knn": { "field": "image-vector", "query_vector": [ -5, 9, -12 ], "k": 10, "boost": 2 } } ] } }, ) print(resp)
const response = await client.search({ index: "my-image-index", size: 3, query: { bool: { should: [ { match: { title: { query: "mountain lake", boost: 1, }, }, }, { knn: { field: "image-vector", query_vector: [-5, 9, -12], k: 10, boost: 2, }, }, ], }, }, }); console.log(response);
POST my-image-index/_search { "size" : 3, "query": { "bool": { "should": [ { "match": { "title": { "query": "mountain lake", "boost": 1 } } }, { "knn": { "field": "image-vector", "query_vector": [-5, 9, -12], "k": 10, "boost": 2 } } ] } } }
嵌套查询内的 knn 查询
编辑knn
查询可以在嵌套查询内部使用。此处的行为类似于顶层嵌套 kNN 搜索
- 在嵌套的 dense_vectors 上进行 kNN 搜索可以使顶级文档的结果多样化
-
支持对顶级文档元数据的
filter
,并将其用作预过滤器 -
不支持对
nested
字段元数据的filter
示例查询如下所示
{ "query" : { "nested" : { "path" : "paragraph", "query" : { "knn": { "query_vector": [ 0.45, 45 ], "field": "paragraph.vector", "num_candidates": 2 } } } } }