标准分词器

编辑

standard 分词器是默认分词器,如果没有指定其他分词器,则会使用它。它提供基于语法的分词(基于 Unicode 文本分割算法,如 Unicode Standard Annex #29 中所指定),并且适用于大多数语言。

示例输出

编辑
resp = client.indices.analyze(
    analyzer="standard",
    text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
response = client.indices.analyze(
  body: {
    analyzer: 'standard',
    text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
  }
)
puts response
const response = await client.indices.analyze({
  analyzer: "standard",
  text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
});
console.log(response);
POST _analyze
{
  "analyzer": "standard",
  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}

上述句子将产生以下词项:

[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]

配置

编辑

standard 分词器接受以下参数:

max_token_length

最大词项长度。如果看到的词项超过此长度,则会在 max_token_length 间隔处拆分。默认为 255

stopwords

预定义的停用词列表,例如 _english_ 或包含停用词列表的数组。默认为 _none_

stopwords_path

包含停用词的文件的路径。

有关停用词配置的更多信息,请参阅 停用词标记过滤器

示例配置

编辑

在此示例中,我们将 standard 分词器的 max_token_length 配置为 5(仅用于演示目的),并使用预定义的英语停用词列表

resp = client.indices.create(
    index="my-index-000001",
    settings={
        "analysis": {
            "analyzer": {
                "my_english_analyzer": {
                    "type": "standard",
                    "max_token_length": 5,
                    "stopwords": "_english_"
                }
            }
        }
    },
)
print(resp)

resp1 = client.indices.analyze(
    index="my-index-000001",
    analyzer="my_english_analyzer",
    text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp1)
response = client.indices.create(
  index: 'my-index-000001',
  body: {
    settings: {
      analysis: {
        analyzer: {
          my_english_analyzer: {
            type: 'standard',
            max_token_length: 5,
            stopwords: '_english_'
          }
        }
      }
    }
  }
)
puts response

response = client.indices.analyze(
  index: 'my-index-000001',
  body: {
    analyzer: 'my_english_analyzer',
    text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
  }
)
puts response
const response = await client.indices.create({
  index: "my-index-000001",
  settings: {
    analysis: {
      analyzer: {
        my_english_analyzer: {
          type: "standard",
          max_token_length: 5,
          stopwords: "_english_",
        },
      },
    },
  },
});
console.log(response);

const response1 = await client.indices.analyze({
  index: "my-index-000001",
  analyzer: "my_english_analyzer",
  text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
});
console.log(response1);
PUT my-index-000001
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_english_analyzer": {
          "type": "standard",
          "max_token_length": 5,
          "stopwords": "_english_"
        }
      }
    }
  }
}

POST my-index-000001/_analyze
{
  "analyzer": "my_english_analyzer",
  "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}

上述示例产生以下词项:

[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]

定义

编辑

standard 分词器由以下部分组成:

分词器
标记过滤器

如果需要自定义 standard 分词器,使其超出配置参数的范围,则需要将其重新创建为 custom 分词器并进行修改,通常是通过添加标记过滤器。这将重新创建内置的 standard 分词器,您可以将其用作起点

resp = client.indices.create(
    index="standard_example",
    settings={
        "analysis": {
            "analyzer": {
                "rebuilt_standard": {
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase"
                    ]
                }
            }
        }
    },
)
print(resp)
response = client.indices.create(
  index: 'standard_example',
  body: {
    settings: {
      analysis: {
        analyzer: {
          rebuilt_standard: {
            tokenizer: 'standard',
            filter: [
              'lowercase'
            ]
          }
        }
      }
    }
  }
)
puts response
const response = await client.indices.create({
  index: "standard_example",
  settings: {
    analysis: {
      analyzer: {
        rebuilt_standard: {
          tokenizer: "standard",
          filter: ["lowercase"],
        },
      },
    },
  },
});
console.log(response);
PUT /standard_example
{
  "settings": {
    "analysis": {
      "analyzer": {
        "rebuilt_standard": {
          "tokenizer": "standard",
          "filter": [
            "lowercase"       
          ]
        }
      }
    }
  }
}

您可以在 lowercase 之后添加任何标记过滤器。