执行推理 API
编辑执行推理 API
编辑通过使用推理端点对输入文本执行推理任务。
推理 API 使您能够使用某些服务,例如内置的机器学习模型(ELSER、E5)、通过 Eland 上传的模型、Cohere、OpenAI、Azure、Google AI Studio、Google Vertex AI、Anthropic、Watsonx.ai 或 Hugging Face。对于内置模型和通过 Eland 上传的模型,推理 API 提供了一种使用和管理训练模型的替代方法。但是,如果您不打算使用推理 API 来使用这些模型,或者您想使用非 NLP 模型,请使用机器学习训练模型 API。
请求
编辑POST /_inference/<inference_id>
POST /_inference/<task_type>/<inference_id>
先决条件
编辑- 需要
monitor_inference
集群权限 (内置的inference_admin
和inference_user
角色授予此权限)
描述
编辑执行推理 API 使您能够使用机器学习模型对您作为输入提供的数据执行特定任务。该 API 返回一个包含任务结果的响应。您使用的推理端点可以执行在创建端点时使用创建推理 API定义的特定任务。
路径参数
编辑-
<inference_id>
- (必需,字符串) 推理端点的唯一标识符。
-
<task_type>
- (可选,字符串) 模型执行的推理任务类型。
查询参数
编辑-
timeout
- (可选,超时) 控制等待推理完成的时间量。默认为 30 秒。
请求正文
编辑-
input
-
(必需,字符串或字符串数组) 要在其上执行推理任务的文本。
input
可以是单个字符串或数组。目前,对于
completion
任务类型的推理端点,仅支持将单个字符串作为输入。 -
query
- (必需,字符串) 仅适用于
rerank
推理端点。搜索查询文本。 -
task_settings
- (可选,对象) 单个推理请求的任务设置。这些设置特定于您指定的
<task_type>
,并覆盖初始化服务时指定的任务设置。
示例
编辑补全示例
编辑以下示例对示例问题执行补全操作。
resp = client.inference.inference( task_type="completion", inference_id="openai_chat_completions", input="What is Elastic?", ) print(resp)
response = client.inference.inference( task_type: 'completion', inference_id: 'openai_chat_completions', body: { input: 'What is Elastic?' } ) puts response
const response = await client.inference.inference({ task_type: "completion", inference_id: "openai_chat_completions", input: "What is Elastic?", }); console.log(response);
POST _inference/completion/openai_chat_completions { "input": "What is Elastic?" }
该 API 返回以下响应
{ "completion": [ { "result": "Elastic is a company that provides a range of software solutions for search, logging, security, and analytics. Their flagship product is Elasticsearch, an open-source, distributed search engine that allows users to search, analyze, and visualize large volumes of data in real-time. Elastic also offers products such as Kibana, a data visualization tool, and Logstash, a log management and pipeline tool, as well as various other tools and solutions for data analysis and management." } ] }
重排序示例
编辑以下示例对示例输入执行重排序操作。
resp = client.inference.inference( task_type="rerank", inference_id="cohere_rerank", input=[ "luke", "like", "leia", "chewy", "r2d2", "star", "wars" ], query="star wars main character", ) print(resp)
response = client.inference.inference( task_type: 'rerank', inference_id: 'cohere_rerank', body: { input: [ 'luke', 'like', 'leia', 'chewy', 'r2d2', 'star', 'wars' ], query: 'star wars main character' } ) puts response
const response = await client.inference.inference({ task_type: "rerank", inference_id: "cohere_rerank", input: ["luke", "like", "leia", "chewy", "r2d2", "star", "wars"], query: "star wars main character", }); console.log(response);
POST _inference/rerank/cohere_rerank { "input": ["luke", "like", "leia", "chewy","r2d2", "star", "wars"], "query": "star wars main character" }
该 API 返回以下响应
{ "rerank": [ { "index": "2", "relevance_score": "0.011597361", "text": "leia" }, { "index": "0", "relevance_score": "0.006338922", "text": "luke" }, { "index": "5", "relevance_score": "0.0016166499", "text": "star" }, { "index": "4", "relevance_score": "0.0011695103", "text": "r2d2" }, { "index": "1", "relevance_score": "5.614787E-4", "text": "like" }, { "index": "6", "relevance_score": "3.7850367E-4", "text": "wars" }, { "index": "3", "relevance_score": "1.2508839E-5", "text": "chewy" } ] }
稀疏嵌入示例
编辑以下示例对示例句子执行稀疏嵌入操作。
resp = client.inference.inference( task_type="sparse_embedding", inference_id="my-elser-model", input="The sky above the port was the color of television tuned to a dead channel.", ) print(resp)
response = client.inference.inference( task_type: 'sparse_embedding', inference_id: 'my-elser-model', body: { input: 'The sky above the port was the color of television tuned to a dead channel.' } ) puts response
const response = await client.inference.inference({ task_type: "sparse_embedding", inference_id: "my-elser-model", input: "The sky above the port was the color of television tuned to a dead channel.", }); console.log(response);
POST _inference/sparse_embedding/my-elser-model { "input": "The sky above the port was the color of television tuned to a dead channel." }
该 API 返回以下响应
{ "sparse_embedding": [ { "port": 2.1259406, "sky": 1.7073475, "color": 1.6922266, "dead": 1.6247464, "television": 1.3525393, "above": 1.2425821, "tuned": 1.1440028, "colors": 1.1218185, "tv": 1.0111054, "ports": 1.0067928, "poem": 1.0042328, "channel": 0.99471164, "tune": 0.96235967, "scene": 0.9020516, (...) }, (...) ] }
文本嵌入示例
编辑以下示例使用 Cohere 集成对示例句子执行文本嵌入操作。
resp = client.inference.inference( task_type="text_embedding", inference_id="my-cohere-endpoint", input="The sky above the port was the color of television tuned to a dead channel.", task_settings={ "input_type": "ingest" }, ) print(resp)
const response = await client.inference.inference({ task_type: "text_embedding", inference_id: "my-cohere-endpoint", input: "The sky above the port was the color of television tuned to a dead channel.", task_settings: { input_type: "ingest", }, }); console.log(response);
POST _inference/text_embedding/my-cohere-endpoint { "input": "The sky above the port was the color of television tuned to a dead channel.", "task_settings": { "input_type": "ingest" } }
该 API 返回以下响应
{ "text_embedding": [ { "embedding": [ { 0.018569946, -0.036895752, 0.01486969, -0.0045204163, -0.04385376, 0.0075950623, 0.04260254, -0.004005432, 0.007865906, 0.030792236, -0.050476074, 0.011795044, -0.011642456, -0.010070801, (...) }, (...) ] } ] }