- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
顶级指标聚合
编辑顶级指标聚合
编辑top_metrics
聚合从具有最大或最小“排序”值的文档中选择指标。例如,这会获取 s
值最大的文档上 m
字段的值
resp = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415 }, { "index": {} }, { "s": 2, "m": 1 }, { "index": {} }, { "s": 3, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" } } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415 }, { index: {} }, { s: 2, m: 1 }, { index: {} }, { s: 3, m: 2.71828 } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' } } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, }, { index: {}, }, { s: 2, m: 1, }, { index: {}, }, { s: 3, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415} {"index": {}} {"s": 2, "m": 1.0} {"index": {}} {"s": 3, "m": 2.71828} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } } ] } } }
top_metrics
在精神上与 top_hits
非常相似,但因为它更受限制,所以它能够使用更少的内存来完成其工作,并且通常速度更快。
sort
编辑指标请求中的 sort
字段的功能与 搜索 请求中的 sort
字段完全相同,除了
聚合返回的指标是搜索请求将返回的第一个命中。所以,
-
"sort": {"s": "desc"}
- 获取具有最高
s
值的文档的指标 -
"sort": {"s": "asc"}
- 获取具有最低
s
值的文档的指标 -
"sort": {"_geo_distance": {"location": "POINT (-78.6382 35.7796)"}}
- 获取
location
最接近35.7796, -78.6382
的文档的指标 -
"sort": "_score"
- 获取具有最高分数的文档的指标
metrics
编辑metrics
选择要返回的“顶部”文档的字段。您可以使用类似 "metrics": {"field": "m"}
的内容请求单个指标,或者通过请求类似 "metrics": [{"field": "m"}, {"field": "i"}
的指标列表来请求多个指标。
metrics.field
支持以下字段类型
除了关键字之外,还支持相应类型的 运行时字段。metrics.field
不支持具有 数组值 的字段。对数组值进行 top_metric
聚合可能会返回不一致的结果。
以下示例在几种字段类型上运行 top_metrics
聚合。
resp = client.indices.create( index="test", mappings={ "properties": { "d": { "type": "date" } } }, ) print(resp) resp1 = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415, "i": 1, "d": "2020-01-01T00:12:12Z", "t": "cat" }, { "index": {} }, { "s": 2, "m": 1, "i": 6, "d": "2020-01-02T00:12:12Z", "t": "dog" }, { "index": {} }, { "s": 3, "m": 2.71828, "i": -12, "d": "2019-12-31T00:12:12Z", "t": "chicken" } ], ) print(resp1) resp2 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": [ { "field": "m" }, { "field": "i" }, { "field": "d" }, { "field": "t.keyword" } ], "sort": { "s": "desc" } } } }, ) print(resp2)
response = client.indices.create( index: 'test', body: { mappings: { properties: { d: { type: 'date' } } } } ) puts response response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415, i: 1, d: '2020-01-01T00:12:12Z', t: 'cat' }, { index: {} }, { s: 2, m: 1, i: 6, d: '2020-01-02T00:12:12Z', t: 'dog' }, { index: {} }, { s: 3, m: 2.71828, i: -12, d: '2019-12-31T00:12:12Z', t: 'chicken' } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: [ { field: 'm' }, { field: 'i' }, { field: 'd' }, { field: 't.keyword' } ], sort: { s: 'desc' } } } } } ) puts response
const response = await client.indices.create({ index: "test", mappings: { properties: { d: { type: "date", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, i: 1, d: "2020-01-01T00:12:12Z", t: "cat", }, { index: {}, }, { s: 2, m: 1, i: 6, d: "2020-01-02T00:12:12Z", t: "dog", }, { index: {}, }, { s: 3, m: 2.71828, i: -12, d: "2019-12-31T00:12:12Z", t: "chicken", }, ], }); console.log(response1); const response2 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: [ { field: "m", }, { field: "i", }, { field: "d", }, { field: "t.keyword", }, ], sort: { s: "desc", }, }, }, }, }); console.log(response2);
PUT /test { "mappings": { "properties": { "d": {"type": "date"} } } } POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415, "i": 1, "d": "2020-01-01T00:12:12Z", "t": "cat"} {"index": {}} {"s": 2, "m": 1.0, "i": 6, "d": "2020-01-02T00:12:12Z", "t": "dog"} {"index": {}} {"s": 3, "m": 2.71828, "i": -12, "d": "2019-12-31T00:12:12Z", "t": "chicken"} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": [ {"field": "m"}, {"field": "i"}, {"field": "d"}, {"field": "t.keyword"} ], "sort": {"s": "desc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ { "sort": [3], "metrics": { "m": 2.718280076980591, "i": -12, "d": "2019-12-31T00:12:12.000Z", "t.keyword": "chicken" } } ] } } }
missing
编辑missing
参数定义了如何处理缺少值的文档。默认情况下,如果任何关键组件缺失,则会忽略整个文档。可以通过使用 missing
参数来将缺失的组件视为具有某个值。
resp = client.indices.create( index="my-index", mappings={ "properties": { "nr": { "type": "integer" }, "state": { "type": "keyword" } } }, ) print(resp) resp1 = client.bulk( index="my-index", refresh=True, operations=[ { "index": {} }, { "nr": 1, "state": "started" }, { "index": {} }, { "nr": 2, "state": "stopped" }, { "index": {} }, { "nr": 3, "state": "N/A" }, { "index": {} }, { "nr": 4 } ], ) print(resp1) resp2 = client.search( index="my-index", filter_path="aggregations", aggs={ "my_top_metrics": { "top_metrics": { "metrics": { "field": "state", "missing": "N/A" }, "sort": { "nr": "desc" } } } }, ) print(resp2)
response = client.indices.create( index: 'my-index', body: { mappings: { properties: { nr: { type: 'integer' }, state: { type: 'keyword' } } } } ) puts response response = client.bulk( index: 'my-index', refresh: true, body: [ { index: {} }, { nr: 1, state: 'started' }, { index: {} }, { nr: 2, state: 'stopped' }, { index: {} }, { nr: 3, state: 'N/A' }, { index: {} }, { nr: 4 } ] ) puts response response = client.search( index: 'my-index', filter_path: 'aggregations', body: { aggregations: { my_top_metrics: { top_metrics: { metrics: { field: 'state', missing: 'N/A' }, sort: { nr: 'desc' } } } } } ) puts response
const response = await client.indices.create({ index: "my-index", mappings: { properties: { nr: { type: "integer", }, state: { type: "keyword", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "my-index", refresh: "true", operations: [ { index: {}, }, { nr: 1, state: "started", }, { index: {}, }, { nr: 2, state: "stopped", }, { index: {}, }, { nr: 3, state: "N/A", }, { index: {}, }, { nr: 4, }, ], }); console.log(response1); const response2 = await client.search({ index: "my-index", filter_path: "aggregations", aggs: { my_top_metrics: { top_metrics: { metrics: { field: "state", missing: "N/A", }, sort: { nr: "desc", }, }, }, }, }); console.log(response2);
PUT /my-index { "mappings": { "properties": { "nr": { "type": "integer" }, "state": { "type": "keyword" } } } } POST /my-index/_bulk?refresh {"index": {}} {"nr": 1, "state": "started"} {"index": {}} {"nr": 2, "state": "stopped"} {"index": {}} {"nr": 3, "state": "N/A"} {"index": {}} {"nr": 4} POST /my-index/_search?filter_path=aggregations { "aggs": { "my_top_metrics": { "top_metrics": { "metrics": { "field": "state", "missing": "N/A"}, "sort": {"nr": "desc"} } } } }
如果要在文本内容上使用聚合,则它必须是 |
|
此文档缺少 |
|
|
该请求导致以下响应
{ "aggregations": { "my_top_metrics": { "top": [ { "sort": [ 4 ], "metrics": { "state": "N/A" } } ] } } }
size
编辑top_metrics
可以使用 size 参数返回前几个文档的指标
resp = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415 }, { "index": {} }, { "s": 2, "m": 1 }, { "index": {} }, { "s": 3, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" }, "size": 3 } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415 }, { index: {} }, { s: 2, m: 1 }, { index: {} }, { s: 3, m: 2.71828 } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' }, size: 3 } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, }, { index: {}, }, { s: 2, m: 1, }, { index: {}, }, { s: 3, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, size: 3, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415} {"index": {}} {"s": 2, "m": 1.0} {"index": {}} {"s": 3, "m": 2.71828} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"}, "size": 3 } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } }, {"sort": [2], "metrics": {"m": 1.0 } }, {"sort": [1], "metrics": {"m": 3.1414999961853027 } } ] } } }
默认 size
为 1。最大默认 size 为 10
,因为聚合的工作存储是“密集的”,这意味着我们为每个存储桶分配 size
个槽。10
是一个 非常 保守的默认最大值,如果需要,您可以通过更改 top_metrics_max_size
索引设置来提高它。但请注意,较大的 size 可能会占用相当多的内存,尤其是当它们位于像大型 术语聚合 这样会产生许多存储桶的聚合内部时。如果您仍然想提高它,请使用类似
resp = client.indices.put_settings( index="test", settings={ "top_metrics_max_size": 100 }, ) print(resp)
response = client.indices.put_settings( index: 'test', body: { top_metrics_max_size: 100 } ) puts response
const response = await client.indices.putSettings({ index: "test", settings: { top_metrics_max_size: 100, }, }); console.log(response);
PUT /test/_settings { "top_metrics_max_size": 100 }
如果 size
大于 1
,则 top_metrics
聚合不能作为排序的 目标。
示例
编辑与术语一起使用
编辑此聚合在 terms
聚合中应该非常有用,例如,查找每个服务器报告的最后一个值。
resp = client.indices.create( index="node", mappings={ "properties": { "ip": { "type": "ip" }, "date": { "type": "date" } } }, ) print(resp) resp1 = client.bulk( index="node", refresh=True, operations=[ { "index": {} }, { "ip": "192.168.0.1", "date": "2020-01-01T01:01:01", "m": 1 }, { "index": {} }, { "ip": "192.168.0.1", "date": "2020-01-01T02:01:01", "m": 2 }, { "index": {} }, { "ip": "192.168.0.2", "date": "2020-01-01T02:01:01", "m": 3 } ], ) print(resp1) resp2 = client.search( index="node", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "date": "desc" } } } } } }, ) print(resp2)
response = client.indices.create( index: 'node', body: { mappings: { properties: { ip: { type: 'ip' }, date: { type: 'date' } } } } ) puts response response = client.bulk( index: 'node', refresh: true, body: [ { index: {} }, { ip: '192.168.0.1', date: '2020-01-01T01:01:01', m: 1 }, { index: {} }, { ip: '192.168.0.1', date: '2020-01-01T02:01:01', m: 2 }, { index: {} }, { ip: '192.168.0.2', date: '2020-01-01T02:01:01', m: 3 } ] ) puts response response = client.search( index: 'node', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip' }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { date: 'desc' } } } } } } } ) puts response
const response = await client.indices.create({ index: "node", mappings: { properties: { ip: { type: "ip", }, date: { type: "date", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "node", refresh: "true", operations: [ { index: {}, }, { ip: "192.168.0.1", date: "2020-01-01T01:01:01", m: 1, }, { index: {}, }, { ip: "192.168.0.1", date: "2020-01-01T02:01:01", m: 2, }, { index: {}, }, { ip: "192.168.0.2", date: "2020-01-01T02:01:01", m: 3, }, ], }); console.log(response1); const response2 = await client.search({ index: "node", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { date: "desc", }, }, }, }, }, }, }); console.log(response2);
PUT /node { "mappings": { "properties": { "ip": {"type": "ip"}, "date": {"type": "date"} } } } POST /node/_bulk?refresh {"index": {}} {"ip": "192.168.0.1", "date": "2020-01-01T01:01:01", "m": 1} {"index": {}} {"ip": "192.168.0.1", "date": "2020-01-01T02:01:01", "m": 2} {"index": {}} {"ip": "192.168.0.2", "date": "2020-01-01T02:01:01", "m": 3} POST /node/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"date": "desc"} } } } } } }
返回结果如下
{ "aggregations": { "ip": { "buckets": [ { "key": "192.168.0.1", "doc_count": 2, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 2 } } ] } }, { "key": "192.168.0.2", "doc_count": 1, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 3 } } ] } } ], "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0 } } }
与 top_hits
不同,您可以通过此指标的结果对存储桶进行排序
resp = client.search( index="node", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip", "order": { "tm.m": "desc" } }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "date": "desc" } } } } } }, ) print(resp)
response = client.search( index: 'node', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip', order: { 'tm.m' => 'desc' } }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { date: 'desc' } } } } } } } ) puts response
const response = await client.search({ index: "node", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", order: { "tm.m": "desc", }, }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { date: "desc", }, }, }, }, }, }, }); console.log(response);
POST /node/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip", "order": {"tm.m": "desc"} }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"date": "desc"} } } } } } }
返回结果如下
{ "aggregations": { "ip": { "buckets": [ { "key": "192.168.0.2", "doc_count": 1, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 3 } } ] } }, { "key": "192.168.0.1", "doc_count": 2, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 2 } } ] } } ], "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0 } } }
混合排序类型
编辑通过在不同索引中具有不同类型的字段对 top_metrics
进行排序会产生一些令人惊讶的结果:浮点数字段始终独立于整数数字段进行排序。
resp = client.bulk( index="test", refresh=True, operations=[ { "index": { "_index": "test1" } }, { "s": 1, "m": 3.1415 }, { "index": { "_index": "test1" } }, { "s": 2, "m": 1 }, { "index": { "_index": "test2" } }, { "s": 3.1, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test*", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "asc" } } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: { _index: 'test1' } }, { s: 1, m: 3.1415 }, { index: { _index: 'test1' } }, { s: 2, m: 1 }, { index: { _index: 'test2' } }, { s: 3.1, m: 2.71828 } ] ) puts response response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'asc' } } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: { _index: "test1", }, }, { s: 1, m: 3.1415, }, { index: { _index: "test1", }, }, { s: 2, m: 1, }, { index: { _index: "test2", }, }, { s: 3.1, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test*", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "asc", }, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {"_index": "test1"}} {"s": 1, "m": 3.1415} {"index": {"_index": "test1"}} {"s": 2, "m": 1} {"index": {"_index": "test2"}} {"s": 3.1, "m": 2.71828} POST /test*/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "asc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3.0999999046325684], "metrics": {"m": 2.718280076980591 } } ] } } }
虽然这比错误要好,但这 可能 不是您想要的结果。虽然它会损失一些精度,但您可以使用类似的方法将整数数字段显式转换为浮点数
resp = client.search( index="test*", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": { "order": "asc", "numeric_type": "double" } } } } }, ) print(resp)
response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: { order: 'asc', numeric_type: 'double' } } } } } } ) puts response
const response = await client.search({ index: "test*", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: { order: "asc", numeric_type: "double", }, }, }, }, }, }); console.log(response);
POST /test*/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": {"order": "asc", "numeric_type": "double"}} } } } }
返回更符合预期的结果
{ "aggregations": { "tm": { "top": [ {"sort": [1.0], "metrics": {"m": 3.1414999961853027 } } ] } } }
在管道聚合中使用
编辑top_metrics
可用于管道聚合,该管道聚合消耗每个存储桶的单个值,例如 bucket_selector
,它应用每个存储桶的过滤,类似于在 SQL 中使用 HAVING 子句。这需要将 size
设置为 1,并为要传递给包装聚合器的(单个)指标指定正确的路径。例如
resp = client.search( index="test*", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" }, "size": 1 } }, "having_tm": { "bucket_selector": { "buckets_path": { "top_m": "tm[m]" }, "script": "params.top_m < 1000" } } } } }, ) print(resp)
response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip' }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' }, size: 1 } }, having_tm: { bucket_selector: { buckets_path: { top_m: 'tm[m]' }, script: 'params.top_m < 1000' } } } } } } ) puts response
const response = await client.search({ index: "test*", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, size: 1, }, }, having_tm: { bucket_selector: { buckets_path: { top_m: "tm[m]", }, script: "params.top_m < 1000", }, }, }, }, }, }); console.log(response);
POST /test*/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"}, "size": 1 } }, "having_tm": { "bucket_selector": { "buckets_path": { "top_m": "tm[m]" }, "script": "params.top_m < 1000" } } } } } }
bucket_path
使用 top_metrics
名称 tm
和为指标提供聚合值的关键字,即 m
。