顶级指标聚合
编辑顶级指标聚合
编辑top_metrics
聚合从具有最大或最小“排序”值的文档中选择指标。例如,这会获取 s
值最大的文档上 m
字段的值
resp = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415 }, { "index": {} }, { "s": 2, "m": 1 }, { "index": {} }, { "s": 3, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" } } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415 }, { index: {} }, { s: 2, m: 1 }, { index: {} }, { s: 3, m: 2.71828 } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' } } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, }, { index: {}, }, { s: 2, m: 1, }, { index: {}, }, { s: 3, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415} {"index": {}} {"s": 2, "m": 1.0} {"index": {}} {"s": 3, "m": 2.71828} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } } ] } } }
top_metrics
在精神上与 top_hits
非常相似,但因为它更受限制,所以它能够使用更少的内存来完成其工作,并且通常速度更快。
sort
编辑指标请求中的 sort
字段的功能与 搜索 请求中的 sort
字段完全相同,除了
聚合返回的指标是搜索请求将返回的第一个命中。所以,
-
"sort": {"s": "desc"}
- 获取具有最高
s
值的文档的指标 -
"sort": {"s": "asc"}
- 获取具有最低
s
值的文档的指标 -
"sort": {"_geo_distance": {"location": "POINT (-78.6382 35.7796)"}}
- 获取
location
最接近35.7796, -78.6382
的文档的指标 -
"sort": "_score"
- 获取具有最高分数的文档的指标
metrics
编辑metrics
选择要返回的“顶部”文档的字段。您可以使用类似 "metrics": {"field": "m"}
的内容请求单个指标,或者通过请求类似 "metrics": [{"field": "m"}, {"field": "i"}
的指标列表来请求多个指标。
metrics.field
支持以下字段类型
除了关键字之外,还支持相应类型的 运行时字段。metrics.field
不支持具有 数组值 的字段。对数组值进行 top_metric
聚合可能会返回不一致的结果。
以下示例在几种字段类型上运行 top_metrics
聚合。
resp = client.indices.create( index="test", mappings={ "properties": { "d": { "type": "date" } } }, ) print(resp) resp1 = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415, "i": 1, "d": "2020-01-01T00:12:12Z", "t": "cat" }, { "index": {} }, { "s": 2, "m": 1, "i": 6, "d": "2020-01-02T00:12:12Z", "t": "dog" }, { "index": {} }, { "s": 3, "m": 2.71828, "i": -12, "d": "2019-12-31T00:12:12Z", "t": "chicken" } ], ) print(resp1) resp2 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": [ { "field": "m" }, { "field": "i" }, { "field": "d" }, { "field": "t.keyword" } ], "sort": { "s": "desc" } } } }, ) print(resp2)
response = client.indices.create( index: 'test', body: { mappings: { properties: { d: { type: 'date' } } } } ) puts response response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415, i: 1, d: '2020-01-01T00:12:12Z', t: 'cat' }, { index: {} }, { s: 2, m: 1, i: 6, d: '2020-01-02T00:12:12Z', t: 'dog' }, { index: {} }, { s: 3, m: 2.71828, i: -12, d: '2019-12-31T00:12:12Z', t: 'chicken' } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: [ { field: 'm' }, { field: 'i' }, { field: 'd' }, { field: 't.keyword' } ], sort: { s: 'desc' } } } } } ) puts response
const response = await client.indices.create({ index: "test", mappings: { properties: { d: { type: "date", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, i: 1, d: "2020-01-01T00:12:12Z", t: "cat", }, { index: {}, }, { s: 2, m: 1, i: 6, d: "2020-01-02T00:12:12Z", t: "dog", }, { index: {}, }, { s: 3, m: 2.71828, i: -12, d: "2019-12-31T00:12:12Z", t: "chicken", }, ], }); console.log(response1); const response2 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: [ { field: "m", }, { field: "i", }, { field: "d", }, { field: "t.keyword", }, ], sort: { s: "desc", }, }, }, }, }); console.log(response2);
PUT /test { "mappings": { "properties": { "d": {"type": "date"} } } } POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415, "i": 1, "d": "2020-01-01T00:12:12Z", "t": "cat"} {"index": {}} {"s": 2, "m": 1.0, "i": 6, "d": "2020-01-02T00:12:12Z", "t": "dog"} {"index": {}} {"s": 3, "m": 2.71828, "i": -12, "d": "2019-12-31T00:12:12Z", "t": "chicken"} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": [ {"field": "m"}, {"field": "i"}, {"field": "d"}, {"field": "t.keyword"} ], "sort": {"s": "desc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ { "sort": [3], "metrics": { "m": 2.718280076980591, "i": -12, "d": "2019-12-31T00:12:12.000Z", "t.keyword": "chicken" } } ] } } }
missing
编辑missing
参数定义了如何处理缺少值的文档。默认情况下,如果任何关键组件缺失,则会忽略整个文档。可以通过使用 missing
参数来将缺失的组件视为具有某个值。
resp = client.indices.create( index="my-index", mappings={ "properties": { "nr": { "type": "integer" }, "state": { "type": "keyword" } } }, ) print(resp) resp1 = client.bulk( index="my-index", refresh=True, operations=[ { "index": {} }, { "nr": 1, "state": "started" }, { "index": {} }, { "nr": 2, "state": "stopped" }, { "index": {} }, { "nr": 3, "state": "N/A" }, { "index": {} }, { "nr": 4 } ], ) print(resp1) resp2 = client.search( index="my-index", filter_path="aggregations", aggs={ "my_top_metrics": { "top_metrics": { "metrics": { "field": "state", "missing": "N/A" }, "sort": { "nr": "desc" } } } }, ) print(resp2)
response = client.indices.create( index: 'my-index', body: { mappings: { properties: { nr: { type: 'integer' }, state: { type: 'keyword' } } } } ) puts response response = client.bulk( index: 'my-index', refresh: true, body: [ { index: {} }, { nr: 1, state: 'started' }, { index: {} }, { nr: 2, state: 'stopped' }, { index: {} }, { nr: 3, state: 'N/A' }, { index: {} }, { nr: 4 } ] ) puts response response = client.search( index: 'my-index', filter_path: 'aggregations', body: { aggregations: { my_top_metrics: { top_metrics: { metrics: { field: 'state', missing: 'N/A' }, sort: { nr: 'desc' } } } } } ) puts response
const response = await client.indices.create({ index: "my-index", mappings: { properties: { nr: { type: "integer", }, state: { type: "keyword", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "my-index", refresh: "true", operations: [ { index: {}, }, { nr: 1, state: "started", }, { index: {}, }, { nr: 2, state: "stopped", }, { index: {}, }, { nr: 3, state: "N/A", }, { index: {}, }, { nr: 4, }, ], }); console.log(response1); const response2 = await client.search({ index: "my-index", filter_path: "aggregations", aggs: { my_top_metrics: { top_metrics: { metrics: { field: "state", missing: "N/A", }, sort: { nr: "desc", }, }, }, }, }); console.log(response2);
PUT /my-index { "mappings": { "properties": { "nr": { "type": "integer" }, "state": { "type": "keyword" } } } } POST /my-index/_bulk?refresh {"index": {}} {"nr": 1, "state": "started"} {"index": {}} {"nr": 2, "state": "stopped"} {"index": {}} {"nr": 3, "state": "N/A"} {"index": {}} {"nr": 4} POST /my-index/_search?filter_path=aggregations { "aggs": { "my_top_metrics": { "top_metrics": { "metrics": { "field": "state", "missing": "N/A"}, "sort": {"nr": "desc"} } } } }
如果要在文本内容上使用聚合,则它必须是 |
|
此文档缺少 |
|
|
该请求导致以下响应
{ "aggregations": { "my_top_metrics": { "top": [ { "sort": [ 4 ], "metrics": { "state": "N/A" } } ] } } }
size
编辑top_metrics
可以使用 size 参数返回前几个文档的指标
resp = client.bulk( index="test", refresh=True, operations=[ { "index": {} }, { "s": 1, "m": 3.1415 }, { "index": {} }, { "s": 2, "m": 1 }, { "index": {} }, { "s": 3, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" }, "size": 3 } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: {} }, { s: 1, m: 3.1415 }, { index: {} }, { s: 2, m: 1 }, { index: {} }, { s: 3, m: 2.71828 } ] ) puts response response = client.search( index: 'test', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' }, size: 3 } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: {}, }, { s: 1, m: 3.1415, }, { index: {}, }, { s: 2, m: 1, }, { index: {}, }, { s: 3, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, size: 3, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {}} {"s": 1, "m": 3.1415} {"index": {}} {"s": 2, "m": 1.0} {"index": {}} {"s": 3, "m": 2.71828} POST /test/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"}, "size": 3 } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } }, {"sort": [2], "metrics": {"m": 1.0 } }, {"sort": [1], "metrics": {"m": 3.1414999961853027 } } ] } } }
默认 size
为 1。最大默认 size 为 10
,因为聚合的工作存储是“密集的”,这意味着我们为每个存储桶分配 size
个槽。10
是一个 非常 保守的默认最大值,如果需要,您可以通过更改 top_metrics_max_size
索引设置来提高它。但请注意,较大的 size 可能会占用相当多的内存,尤其是当它们位于像大型 术语聚合 这样会产生许多存储桶的聚合内部时。如果您仍然想提高它,请使用类似
resp = client.indices.put_settings( index="test", settings={ "top_metrics_max_size": 100 }, ) print(resp)
response = client.indices.put_settings( index: 'test', body: { top_metrics_max_size: 100 } ) puts response
const response = await client.indices.putSettings({ index: "test", settings: { top_metrics_max_size: 100, }, }); console.log(response);
PUT /test/_settings { "top_metrics_max_size": 100 }
如果 size
大于 1
,则 top_metrics
聚合不能作为排序的 目标。
示例
编辑与术语一起使用
编辑此聚合在 terms
聚合中应该非常有用,例如,查找每个服务器报告的最后一个值。
resp = client.indices.create( index="node", mappings={ "properties": { "ip": { "type": "ip" }, "date": { "type": "date" } } }, ) print(resp) resp1 = client.bulk( index="node", refresh=True, operations=[ { "index": {} }, { "ip": "192.168.0.1", "date": "2020-01-01T01:01:01", "m": 1 }, { "index": {} }, { "ip": "192.168.0.1", "date": "2020-01-01T02:01:01", "m": 2 }, { "index": {} }, { "ip": "192.168.0.2", "date": "2020-01-01T02:01:01", "m": 3 } ], ) print(resp1) resp2 = client.search( index="node", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "date": "desc" } } } } } }, ) print(resp2)
response = client.indices.create( index: 'node', body: { mappings: { properties: { ip: { type: 'ip' }, date: { type: 'date' } } } } ) puts response response = client.bulk( index: 'node', refresh: true, body: [ { index: {} }, { ip: '192.168.0.1', date: '2020-01-01T01:01:01', m: 1 }, { index: {} }, { ip: '192.168.0.1', date: '2020-01-01T02:01:01', m: 2 }, { index: {} }, { ip: '192.168.0.2', date: '2020-01-01T02:01:01', m: 3 } ] ) puts response response = client.search( index: 'node', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip' }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { date: 'desc' } } } } } } } ) puts response
const response = await client.indices.create({ index: "node", mappings: { properties: { ip: { type: "ip", }, date: { type: "date", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "node", refresh: "true", operations: [ { index: {}, }, { ip: "192.168.0.1", date: "2020-01-01T01:01:01", m: 1, }, { index: {}, }, { ip: "192.168.0.1", date: "2020-01-01T02:01:01", m: 2, }, { index: {}, }, { ip: "192.168.0.2", date: "2020-01-01T02:01:01", m: 3, }, ], }); console.log(response1); const response2 = await client.search({ index: "node", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { date: "desc", }, }, }, }, }, }, }); console.log(response2);
PUT /node { "mappings": { "properties": { "ip": {"type": "ip"}, "date": {"type": "date"} } } } POST /node/_bulk?refresh {"index": {}} {"ip": "192.168.0.1", "date": "2020-01-01T01:01:01", "m": 1} {"index": {}} {"ip": "192.168.0.1", "date": "2020-01-01T02:01:01", "m": 2} {"index": {}} {"ip": "192.168.0.2", "date": "2020-01-01T02:01:01", "m": 3} POST /node/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"date": "desc"} } } } } } }
返回结果如下
{ "aggregations": { "ip": { "buckets": [ { "key": "192.168.0.1", "doc_count": 2, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 2 } } ] } }, { "key": "192.168.0.2", "doc_count": 1, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 3 } } ] } } ], "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0 } } }
与 top_hits
不同,您可以通过此指标的结果对存储桶进行排序
resp = client.search( index="node", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip", "order": { "tm.m": "desc" } }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "date": "desc" } } } } } }, ) print(resp)
response = client.search( index: 'node', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip', order: { 'tm.m' => 'desc' } }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { date: 'desc' } } } } } } } ) puts response
const response = await client.search({ index: "node", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", order: { "tm.m": "desc", }, }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { date: "desc", }, }, }, }, }, }, }); console.log(response);
POST /node/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip", "order": {"tm.m": "desc"} }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"date": "desc"} } } } } } }
返回结果如下
{ "aggregations": { "ip": { "buckets": [ { "key": "192.168.0.2", "doc_count": 1, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 3 } } ] } }, { "key": "192.168.0.1", "doc_count": 2, "tm": { "top": [ {"sort": ["2020-01-01T02:01:01.000Z"], "metrics": {"m": 2 } } ] } } ], "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0 } } }
混合排序类型
编辑通过在不同索引中具有不同类型的字段对 top_metrics
进行排序会产生一些令人惊讶的结果:浮点数字段始终独立于整数数字段进行排序。
resp = client.bulk( index="test", refresh=True, operations=[ { "index": { "_index": "test1" } }, { "s": 1, "m": 3.1415 }, { "index": { "_index": "test1" } }, { "s": 2, "m": 1 }, { "index": { "_index": "test2" } }, { "s": 3.1, "m": 2.71828 } ], ) print(resp) resp1 = client.search( index="test*", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "asc" } } } }, ) print(resp1)
response = client.bulk( index: 'test', refresh: true, body: [ { index: { _index: 'test1' } }, { s: 1, m: 3.1415 }, { index: { _index: 'test1' } }, { s: 2, m: 1 }, { index: { _index: 'test2' } }, { s: 3.1, m: 2.71828 } ] ) puts response response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'asc' } } } } } ) puts response
const response = await client.bulk({ index: "test", refresh: "true", operations: [ { index: { _index: "test1", }, }, { s: 1, m: 3.1415, }, { index: { _index: "test1", }, }, { s: 2, m: 1, }, { index: { _index: "test2", }, }, { s: 3.1, m: 2.71828, }, ], }); console.log(response); const response1 = await client.search({ index: "test*", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "asc", }, }, }, }, }); console.log(response1);
POST /test/_bulk?refresh {"index": {"_index": "test1"}} {"s": 1, "m": 3.1415} {"index": {"_index": "test1"}} {"s": 2, "m": 1} {"index": {"_index": "test2"}} {"s": 3.1, "m": 2.71828} POST /test*/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "asc"} } } } }
返回结果如下
{ "aggregations": { "tm": { "top": [ {"sort": [3.0999999046325684], "metrics": {"m": 2.718280076980591 } } ] } } }
虽然这比错误要好,但这 可能 不是您想要的结果。虽然它会损失一些精度,但您可以使用类似的方法将整数数字段显式转换为浮点数
resp = client.search( index="test*", filter_path="aggregations", aggs={ "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": { "order": "asc", "numeric_type": "double" } } } } }, ) print(resp)
response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: { order: 'asc', numeric_type: 'double' } } } } } } ) puts response
const response = await client.search({ index: "test*", filter_path: "aggregations", aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: { order: "asc", numeric_type: "double", }, }, }, }, }, }); console.log(response);
POST /test*/_search?filter_path=aggregations { "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": {"order": "asc", "numeric_type": "double"}} } } } }
返回更符合预期的结果
{ "aggregations": { "tm": { "top": [ {"sort": [1.0], "metrics": {"m": 3.1414999961853027 } } ] } } }
在管道聚合中使用
编辑top_metrics
可用于管道聚合,该管道聚合消耗每个存储桶的单个值,例如 bucket_selector
,它应用每个存储桶的过滤,类似于在 SQL 中使用 HAVING 子句。这需要将 size
设置为 1,并为要传递给包装聚合器的(单个)指标指定正确的路径。例如
resp = client.search( index="test*", filter_path="aggregations", aggs={ "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": { "field": "m" }, "sort": { "s": "desc" }, "size": 1 } }, "having_tm": { "bucket_selector": { "buckets_path": { "top_m": "tm[m]" }, "script": "params.top_m < 1000" } } } } }, ) print(resp)
response = client.search( index: 'test*', filter_path: 'aggregations', body: { aggregations: { ip: { terms: { field: 'ip' }, aggregations: { tm: { top_metrics: { metrics: { field: 'm' }, sort: { s: 'desc' }, size: 1 } }, having_tm: { bucket_selector: { buckets_path: { top_m: 'tm[m]' }, script: 'params.top_m < 1000' } } } } } } ) puts response
const response = await client.search({ index: "test*", filter_path: "aggregations", aggs: { ip: { terms: { field: "ip", }, aggs: { tm: { top_metrics: { metrics: { field: "m", }, sort: { s: "desc", }, size: 1, }, }, having_tm: { bucket_selector: { buckets_path: { top_m: "tm[m]", }, script: "params.top_m < 1000", }, }, }, }, }, }); console.log(response);
POST /test*/_search?filter_path=aggregations { "aggs": { "ip": { "terms": { "field": "ip" }, "aggs": { "tm": { "top_metrics": { "metrics": {"field": "m"}, "sort": {"s": "desc"}, "size": 1 } }, "having_tm": { "bucket_selector": { "buckets_path": { "top_m": "tm[m]" }, "script": "params.top_m < 1000" } } } } } }
bucket_path
使用 top_metrics
名称 tm
和为指标提供聚合值的关键字,即 m
。