值计数聚合
编辑值计数聚合
编辑一个 单值
指标聚合,用于计算从聚合文档中提取的值的数量。这些值可以从文档中的特定字段提取,也可以由提供的脚本生成。通常,此聚合器将与其他单值聚合结合使用。例如,在计算 avg
时,人们可能对计算平均值所依据的值的数量感兴趣。
value_count
不会删除重复的值,因此即使某个字段具有重复项,每个值也会被单独计数。
resp = client.search( index="sales", size="0", aggs={ "types_count": { "value_count": { "field": "type" } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { types_count: { value_count: { field: 'type' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "types_count": { "value_count": { "field": "type" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ index: "sales", size: 0, aggs: { types_count: { value_count: { field: "type", }, }, }, }); console.log(response);
POST /sales/_search?size=0 { "aggs" : { "types_count" : { "value_count" : { "field" : "type" } } } }
响应
{ ... "aggregations": { "types_count": { "value": 7 } } }
聚合的名称(上面的 types_count
)也用作从返回的响应中检索聚合结果的键。
脚本
编辑如果需要计数比单个字段中的值更复杂的内容,则应在运行时字段上运行聚合。
resp = client.search( index="sales", size=0, runtime_mappings={ "tags": { "type": "keyword", "script": "\n emit(doc['type'].value);\n if (doc['promoted'].value) {\n emit('hot');\n }\n " } }, aggs={ "tags_count": { "value_count": { "field": "tags" } } }, ) print(resp)
response = client.search( index: 'sales', body: { size: 0, runtime_mappings: { tags: { type: 'keyword', script: "\n emit(doc['type'].value);\n if (doc['promoted'].value) {\n emit('hot');\n }\n " } }, aggregations: { tags_count: { value_count: { field: 'tags' } } } } ) puts response
const response = await client.search({ index: "sales", size: 0, runtime_mappings: { tags: { type: "keyword", script: "\n emit(doc['type'].value);\n if (doc['promoted'].value) {\n emit('hot');\n }\n ", }, }, aggs: { tags_count: { value_count: { field: "tags", }, }, }, }); console.log(response);
POST /sales/_search { "size": 0, "runtime_mappings": { "tags": { "type": "keyword", "script": """ emit(doc['type'].value); if (doc['promoted'].value) { emit('hot'); } """ } }, "aggs": { "tags_count": { "value_count": { "field": "tags" } } } }
直方图字段
编辑当在直方图字段上计算 value_count
聚合时,聚合的结果是直方图的 counts
数组中所有数字的总和。
例如,对于以下存储不同网络延迟指标的预聚合直方图的索引
resp = client.index( index="metrics_index", id="1", document={ "network.name": "net-1", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 3, 7, 23, 12, 6 ] } }, ) print(resp) resp1 = client.index( index="metrics_index", id="2", document={ "network.name": "net-2", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 8, 17, 8, 7, 6 ] } }, ) print(resp1) resp2 = client.search( index="metrics_index", size="0", aggs={ "total_requests": { "value_count": { "field": "latency_histo" } } }, ) print(resp2)
response = client.index( index: 'metrics_index', id: 1, body: { 'network.name' => 'net-1', latency_histo: { values: [ 0.1, 0.2, 0.3, 0.4, 0.5 ], counts: [ 3, 7, 23, 12, 6 ] } } ) puts response response = client.index( index: 'metrics_index', id: 2, body: { 'network.name' => 'net-2', latency_histo: { values: [ 0.1, 0.2, 0.3, 0.4, 0.5 ], counts: [ 8, 17, 8, 7, 6 ] } } ) puts response response = client.search( index: 'metrics_index', size: 0, body: { aggregations: { total_requests: { value_count: { field: 'latency_histo' } } } } ) puts response
{ res, err := es.Index( "metrics_index", strings.NewReader(`{ "network.name": "net-1", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 3, 7, 23, 12, 6 ] } }`), es.Index.WithDocumentID("1"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Index( "metrics_index", strings.NewReader(`{ "network.name": "net-2", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 8, 17, 8, 7, 6 ] } }`), es.Index.WithDocumentID("2"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithIndex("metrics_index"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "total_requests": { "value_count": { "field": "latency_histo" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err) }
const response = await client.index({ index: "metrics_index", id: 1, document: { "network.name": "net-1", latency_histo: { values: [0.1, 0.2, 0.3, 0.4, 0.5], counts: [3, 7, 23, 12, 6], }, }, }); console.log(response); const response1 = await client.index({ index: "metrics_index", id: 2, document: { "network.name": "net-2", latency_histo: { values: [0.1, 0.2, 0.3, 0.4, 0.5], counts: [8, 17, 8, 7, 6], }, }, }); console.log(response1); const response2 = await client.search({ index: "metrics_index", size: 0, aggs: { total_requests: { value_count: { field: "latency_histo", }, }, }, }); console.log(response2);
PUT metrics_index/_doc/1 { "network.name" : "net-1", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [3, 7, 23, 12, 6] } } PUT metrics_index/_doc/2 { "network.name" : "net-2", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [8, 17, 8, 7, 6] } } POST /metrics_index/_search?size=0 { "aggs": { "total_requests": { "value_count": { "field": "latency_histo" } } } }
对于每个直方图字段,value_count
聚合将对 counts
数组 <1> 中的所有数字求和。最终,它将添加所有直方图的所有值并返回以下结果
{ ... "aggregations": { "total_requests": { "value": 97 } } }