- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
地理质心聚合
编辑地理质心聚合
编辑一种度量聚合,它计算地理字段的所有坐标值的加权质心。
示例
resp = client.indices.create( index="museums", mappings={ "properties": { "location": { "type": "geo_point" } } }, ) print(resp) resp1 = client.bulk( index="museums", refresh=True, operations=[ { "index": { "_id": 1 } }, { "location": "POINT (4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum" }, { "index": { "_id": 2 } }, { "location": "POINT (4.901618 52.369219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis" }, { "index": { "_id": 3 } }, { "location": "POINT (4.914722 52.371667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum" }, { "index": { "_id": 4 } }, { "location": "POINT (4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis" }, { "index": { "_id": 5 } }, { "location": "POINT (2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre" }, { "index": { "_id": 6 } }, { "location": "POINT (2.327000 48.860000)", "city": "Paris", "name": "Musée d'Orsay" } ], ) print(resp1) resp2 = client.search( index="museums", size="0", aggs={ "centroid": { "geo_centroid": { "field": "location" } } }, ) print(resp2)
response = client.indices.create( index: 'museums', body: { mappings: { properties: { location: { type: 'geo_point' } } } } ) puts response response = client.bulk( index: 'museums', refresh: true, body: [ { index: { _id: 1 } }, { location: 'POINT (4.912350 52.374081)', city: 'Amsterdam', name: 'NEMO Science Museum' }, { index: { _id: 2 } }, { location: 'POINT (4.901618 52.369219)', city: 'Amsterdam', name: 'Museum Het Rembrandthuis' }, { index: { _id: 3 } }, { location: 'POINT (4.914722 52.371667)', city: 'Amsterdam', name: 'Nederlands Scheepvaartmuseum' }, { index: { _id: 4 } }, { location: 'POINT (4.405200 51.222900)', city: 'Antwerp', name: 'Letterenhuis' }, { index: { _id: 5 } }, { location: 'POINT (2.336389 48.861111)', city: 'Paris', name: 'Musée du Louvre' }, { index: { _id: 6 } }, { location: 'POINT (2.327000 48.860000)', city: 'Paris', name: "Musée d'Orsay" } ] ) puts response response = client.search( index: 'museums', size: 0, body: { aggregations: { centroid: { geo_centroid: { field: 'location' } } } } ) puts response
const response = await client.indices.create({ index: "museums", mappings: { properties: { location: { type: "geo_point", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "museums", refresh: "true", operations: [ { index: { _id: 1, }, }, { location: "POINT (4.912350 52.374081)", city: "Amsterdam", name: "NEMO Science Museum", }, { index: { _id: 2, }, }, { location: "POINT (4.901618 52.369219)", city: "Amsterdam", name: "Museum Het Rembrandthuis", }, { index: { _id: 3, }, }, { location: "POINT (4.914722 52.371667)", city: "Amsterdam", name: "Nederlands Scheepvaartmuseum", }, { index: { _id: 4, }, }, { location: "POINT (4.405200 51.222900)", city: "Antwerp", name: "Letterenhuis", }, { index: { _id: 5, }, }, { location: "POINT (2.336389 48.861111)", city: "Paris", name: "Musée du Louvre", }, { index: { _id: 6, }, }, { location: "POINT (2.327000 48.860000)", city: "Paris", name: "Musée d'Orsay", }, ], }); console.log(response1); const response2 = await client.search({ index: "museums", size: 0, aggs: { centroid: { geo_centroid: { field: "location", }, }, }, }); console.log(response2);
PUT /museums { "mappings": { "properties": { "location": { "type": "geo_point" } } } } POST /museums/_bulk?refresh {"index":{"_id":1}} {"location": "POINT (4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum"} {"index":{"_id":2}} {"location": "POINT (4.901618 52.369219)", "city": "Amsterdam", "name": "Museum Het Rembrandthuis"} {"index":{"_id":3}} {"location": "POINT (4.914722 52.371667)", "city": "Amsterdam", "name": "Nederlands Scheepvaartmuseum"} {"index":{"_id":4}} {"location": "POINT (4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis"} {"index":{"_id":5}} {"location": "POINT (2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre"} {"index":{"_id":6}} {"location": "POINT (2.327000 48.860000)", "city": "Paris", "name": "Musée d'Orsay"} POST /museums/_search?size=0 { "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } }
|
上面的聚合演示了如何计算所有博物馆文档的 location 字段的质心。
以上聚合的响应
{ ... "aggregations": { "centroid": { "location": { "lat": 51.00982965203002, "lon": 3.9662131341174245 }, "count": 6 } } }
当与作为其他桶聚合的子聚合组合时,geo_centroid
聚合更有趣。
示例
resp = client.search( index="museums", size="0", aggs={ "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } } }, ) print(resp)
response = client.search( index: 'museums', size: 0, body: { aggregations: { cities: { terms: { field: 'city.keyword' }, aggregations: { centroid: { geo_centroid: { field: 'location' } } } } } } ) puts response
const response = await client.search({ index: "museums", size: 0, aggs: { cities: { terms: { field: "city.keyword", }, aggs: { centroid: { geo_centroid: { field: "location", }, }, }, }, }, }); console.log(response);
POST /museums/_search?size=0 { "aggs": { "cities": { "terms": { "field": "city.keyword" }, "aggs": { "centroid": { "geo_centroid": { "field": "location" } } } } } }
上面的示例使用 geo_centroid
作为 词项 桶聚合的子聚合,用于查找每个城市中博物馆的中心位置。
以上聚合的响应
{ ... "aggregations": { "cities": { "sum_other_doc_count": 0, "doc_count_error_upper_bound": 0, "buckets": [ { "key": "Amsterdam", "doc_count": 3, "centroid": { "location": { "lat": 52.371655656024814, "lon": 4.909563297405839 }, "count": 3 } }, { "key": "Paris", "doc_count": 2, "centroid": { "location": { "lat": 48.86055548675358, "lon": 2.3316944623366 }, "count": 2 } }, { "key": "Antwerp", "doc_count": 1, "centroid": { "location": { "lat": 51.22289997059852, "lon": 4.40519998781383 }, "count": 1 } } ] } } }
geo_shape
字段上的地理质心聚合
编辑地理形状的质心度量比点的质心度量更精细。包含形状的特定聚合桶的质心是桶中最高维度形状类型的质心。例如,如果一个桶包含由多边形和线组成的形状,则线不参与质心度量。每种形状类型的质心计算方式都不同。通过 圆形 摄取的包络和圆形被视为多边形。
几何类型 | 质心计算 |
---|---|
[多]点 |
所有坐标的等权重平均值 |
[多]线串 |
每个线段的质心的加权平均值,其中每个线段的权重是其以度为单位的长度 |
[多]边形 |
一个多边形的所有三角形质心的加权平均值,其中三角形由每两个连续顶点和起点形成。孔具有负权重。权重表示计算出的三角形的面积,单位为 deg^2 |
几何集合 |
所有具有最高维度的底层几何图形的质心。如果是多边形、直线和/或点,则忽略直线和/或点。如果是直线和点,则忽略点 |
示例
resp = client.indices.create( index="places", mappings={ "properties": { "geometry": { "type": "geo_shape" } } }, ) print(resp) resp1 = client.bulk( index="places", refresh=True, operations=[ { "index": { "_id": 1 } }, { "name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" }, { "index": { "_id": 2 } }, { "name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ], ) print(resp1) resp2 = client.search( index="places", size="0", aggs={ "centroid": { "geo_centroid": { "field": "geometry" } } }, ) print(resp2)
response = client.indices.create( index: 'places', body: { mappings: { properties: { geometry: { type: 'geo_shape' } } } } ) puts response response = client.bulk( index: 'places', refresh: true, body: [ { index: { _id: 1 } }, { name: 'NEMO Science Museum', geometry: 'POINT(4.912350 52.374081)' }, { index: { _id: 2 } }, { name: 'Sportpark De Weeren', geometry: { type: 'Polygon', coordinates: [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } ] ) puts response response = client.search( index: 'places', size: 0, body: { aggregations: { centroid: { geo_centroid: { field: 'geometry' } } } } ) puts response
const response = await client.indices.create({ index: "places", mappings: { properties: { geometry: { type: "geo_shape", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "places", refresh: "true", operations: [ { index: { _id: 1, }, }, { name: "NEMO Science Museum", geometry: "POINT(4.912350 52.374081)", }, { index: { _id: 2, }, }, { name: "Sportpark De Weeren", geometry: { type: "Polygon", coordinates: [ [ [4.965305328369141, 52.39347642069457], [4.966979026794433, 52.391721758934835], [4.969425201416015, 52.39238958618537], [4.967944622039794, 52.39420969150824], [4.965305328369141, 52.39347642069457], ], ], }, }, ], }); console.log(response1); const response2 = await client.search({ index: "places", size: 0, aggs: { centroid: { geo_centroid: { field: "geometry", }, }, }, }); console.log(response2);
PUT /places { "mappings": { "properties": { "geometry": { "type": "geo_shape" } } } } POST /places/_bulk?refresh {"index":{"_id":1}} {"name": "NEMO Science Museum", "geometry": "POINT(4.912350 52.374081)" } {"index":{"_id":2}} {"name": "Sportpark De Weeren", "geometry": { "type": "Polygon", "coordinates": [ [ [ 4.965305328369141, 52.39347642069457 ], [ 4.966979026794433, 52.391721758934835 ], [ 4.969425201416015, 52.39238958618537 ], [ 4.967944622039794, 52.39420969150824 ], [ 4.965305328369141, 52.39347642069457 ] ] ] } } POST /places/_search?size=0 { "aggs": { "centroid": { "geo_centroid": { "field": "geometry" } } } }
{ ... "aggregations": { "centroid": { "location": { "lat": 52.39296147599816, "lon": 4.967404240742326 }, "count": 2 } } }
将 geo_centroid
用作 geohash_grid
的子聚合
geohash_grid
聚合将文档(而不是单个地理点)放入桶中。如果文档的 geo_point
字段包含多个值,则该文档可能会被分配到多个桶,即使其一个或多个地理点在桶边界之外。
如果还使用了 geocentroid
子聚合,则每个质心都使用桶中的所有地理点计算,包括桶边界之外的地理点。这可能会导致质心位于桶边界之外。
On this page