- Elasticsearch 指南其他版本
- 8.17 中的新功能
- Elasticsearch 基础
- 快速入门
- 设置 Elasticsearch
- 升级 Elasticsearch
- 索引模块
- 映射
- 文本分析
- 索引模板
- 数据流
- 摄取管道
- 别名
- 搜索您的数据
- 重新排名
- 查询 DSL
- 聚合
- 地理空间分析
- 连接器
- EQL
- ES|QL
- SQL
- 脚本
- 数据管理
- 自动缩放
- 监视集群
- 汇总或转换数据
- 设置高可用性集群
- 快照和还原
- 保护 Elastic Stack 的安全
- Watcher
- 命令行工具
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- 优化
- 故障排除
- 修复常见的集群问题
- 诊断未分配的分片
- 向系统中添加丢失的层
- 允许 Elasticsearch 在系统中分配数据
- 允许 Elasticsearch 分配索引
- 索引将索引分配过滤器与数据层节点角色混合,以在数据层之间移动
- 没有足够的节点来分配所有分片副本
- 单个节点上索引的分片总数已超过
- 每个节点的分片总数已达到
- 故障排除损坏
- 修复磁盘空间不足的数据节点
- 修复磁盘空间不足的主节点
- 修复磁盘空间不足的其他角色节点
- 启动索引生命周期管理
- 启动快照生命周期管理
- 从快照恢复
- 故障排除损坏的存储库
- 解决重复的快照策略失败问题
- 故障排除不稳定的集群
- 故障排除发现
- 故障排除监控
- 故障排除转换
- 故障排除 Watcher
- 故障排除搜索
- 故障排除分片容量健康问题
- 故障排除不平衡的集群
- 捕获诊断信息
- REST API
- API 约定
- 通用选项
- REST API 兼容性
- 自动缩放 API
- 行为分析 API
- 紧凑和对齐文本 (CAT) API
- 集群 API
- 跨集群复制 API
- 连接器 API
- 数据流 API
- 文档 API
- 丰富 API
- EQL API
- ES|QL API
- 功能 API
- Fleet API
- 图表探索 API
- 索引 API
- 别名是否存在
- 别名
- 分析
- 分析索引磁盘使用量
- 清除缓存
- 克隆索引
- 关闭索引
- 创建索引
- 创建或更新别名
- 创建或更新组件模板
- 创建或更新索引模板
- 创建或更新索引模板(旧版)
- 删除组件模板
- 删除悬挂索引
- 删除别名
- 删除索引
- 删除索引模板
- 删除索引模板(旧版)
- 存在
- 字段使用情况统计信息
- 刷新
- 强制合并
- 获取别名
- 获取组件模板
- 获取字段映射
- 获取索引
- 获取索引设置
- 获取索引模板
- 获取索引模板(旧版)
- 获取映射
- 导入悬挂索引
- 索引恢复
- 索引段
- 索引分片存储
- 索引统计信息
- 索引模板是否存在(旧版)
- 列出悬挂索引
- 打开索引
- 刷新
- 解析索引
- 解析集群
- 翻转
- 收缩索引
- 模拟索引
- 模拟模板
- 拆分索引
- 解冻索引
- 更新索引设置
- 更新映射
- 索引生命周期管理 API
- 推理 API
- 信息 API
- 摄取 API
- 许可 API
- Logstash API
- 机器学习 API
- 机器学习异常检测 API
- 机器学习数据帧分析 API
- 机器学习训练模型 API
- 迁移 API
- 节点生命周期 API
- 查询规则 API
- 重新加载搜索分析器 API
- 存储库计量 API
- 汇总 API
- 根 API
- 脚本 API
- 搜索 API
- 搜索应用程序 API
- 可搜索快照 API
- 安全 API
- 身份验证
- 更改密码
- 清除缓存
- 清除角色缓存
- 清除权限缓存
- 清除 API 密钥缓存
- 清除服务帐户令牌缓存
- 创建 API 密钥
- 创建或更新应用程序权限
- 创建或更新角色映射
- 创建或更新角色
- 批量创建或更新角色 API
- 批量删除角色 API
- 创建或更新用户
- 创建服务帐户令牌
- 委托 PKI 身份验证
- 删除应用程序权限
- 删除角色映射
- 删除角色
- 删除服务帐户令牌
- 删除用户
- 禁用用户
- 启用用户
- 注册 Kibana
- 注册节点
- 获取 API 密钥信息
- 获取应用程序权限
- 获取内置权限
- 获取角色映射
- 获取角色
- 查询角色
- 获取服务帐户
- 获取服务帐户凭据
- 获取安全设置
- 获取令牌
- 获取用户权限
- 获取用户
- 授予 API 密钥
- 具有权限
- 使 API 密钥失效
- 使令牌失效
- OpenID Connect 准备身份验证
- OpenID Connect 身份验证
- OpenID Connect 注销
- 查询 API 密钥信息
- 查询用户
- 更新 API 密钥
- 更新安全设置
- 批量更新 API 密钥
- SAML 准备身份验证
- SAML 身份验证
- SAML 注销
- SAML 失效
- SAML 完成注销
- SAML 服务提供商元数据
- SSL 证书
- 激活用户配置文件
- 禁用用户配置文件
- 启用用户配置文件
- 获取用户配置文件
- 建议用户配置文件
- 更新用户配置文件数据
- 具有用户配置文件权限
- 创建跨集群 API 密钥
- 更新跨集群 API 密钥
- 快照和还原 API
- 快照生命周期管理 API
- SQL API
- 同义词 API
- 文本结构 API
- 转换 API
- 使用情况 API
- Watcher API
- 定义
- 迁移指南
- 发行说明
- Elasticsearch 版本 8.17.0
- Elasticsearch 版本 8.16.1
- Elasticsearch 版本 8.16.0
- Elasticsearch 版本 8.15.5
- Elasticsearch 版本 8.15.4
- Elasticsearch 版本 8.15.3
- Elasticsearch 版本 8.15.2
- Elasticsearch 版本 8.15.1
- Elasticsearch 版本 8.15.0
- Elasticsearch 版本 8.14.3
- Elasticsearch 版本 8.14.2
- Elasticsearch 版本 8.14.1
- Elasticsearch 版本 8.14.0
- Elasticsearch 版本 8.13.4
- Elasticsearch 版本 8.13.3
- Elasticsearch 版本 8.13.2
- Elasticsearch 版本 8.13.1
- Elasticsearch 版本 8.13.0
- Elasticsearch 版本 8.12.2
- Elasticsearch 版本 8.12.1
- Elasticsearch 版本 8.12.0
- Elasticsearch 版本 8.11.4
- Elasticsearch 版本 8.11.3
- Elasticsearch 版本 8.11.2
- Elasticsearch 版本 8.11.1
- Elasticsearch 版本 8.11.0
- Elasticsearch 版本 8.10.4
- Elasticsearch 版本 8.10.3
- Elasticsearch 版本 8.10.2
- Elasticsearch 版本 8.10.1
- Elasticsearch 版本 8.10.0
- Elasticsearch 版本 8.9.2
- Elasticsearch 版本 8.9.1
- Elasticsearch 版本 8.9.0
- Elasticsearch 版本 8.8.2
- Elasticsearch 版本 8.8.1
- Elasticsearch 版本 8.8.0
- Elasticsearch 版本 8.7.1
- Elasticsearch 版本 8.7.0
- Elasticsearch 版本 8.6.2
- Elasticsearch 版本 8.6.1
- Elasticsearch 版本 8.6.0
- Elasticsearch 版本 8.5.3
- Elasticsearch 版本 8.5.2
- Elasticsearch 版本 8.5.1
- Elasticsearch 版本 8.5.0
- Elasticsearch 版本 8.4.3
- Elasticsearch 版本 8.4.2
- Elasticsearch 版本 8.4.1
- Elasticsearch 版本 8.4.0
- Elasticsearch 版本 8.3.3
- Elasticsearch 版本 8.3.2
- Elasticsearch 版本 8.3.1
- Elasticsearch 版本 8.3.0
- Elasticsearch 版本 8.2.3
- Elasticsearch 版本 8.2.2
- Elasticsearch 版本 8.2.1
- Elasticsearch 版本 8.2.0
- Elasticsearch 版本 8.1.3
- Elasticsearch 版本 8.1.2
- Elasticsearch 版本 8.1.1
- Elasticsearch 版本 8.1.0
- Elasticsearch 版本 8.0.1
- Elasticsearch 版本 8.0.0
- Elasticsearch 版本 8.0.0-rc2
- Elasticsearch 版本 8.0.0-rc1
- Elasticsearch 版本 8.0.0-beta1
- Elasticsearch 版本 8.0.0-alpha2
- Elasticsearch 版本 8.0.0-alpha1
- 依赖项和版本
稀疏向量查询
编辑稀疏向量查询
编辑稀疏向量查询执行一个由稀疏向量组成的查询,例如由学习的稀疏检索模型构建的查询。这可以通过两种策略之一实现
- 使用自然语言处理模型将查询文本转换为标记-权重对列表
- 将预先计算的标记-权重对作为查询向量发送
然后,这些标记-权重对用于针对稀疏向量的查询中。在查询时,使用与创建标记时相同的推理模型来计算查询向量。查询时,这些查询向量与其各自的权重进行 OR 运算,这意味着评分实际上是存储维度和查询维度之间的点积计算。
例如,存储的向量 {"feature_0": 0.12, "feature_1": 1.2, "feature_2": 3.0}
和查询向量 {"feature_0": 2.5, "feature_2": 0.2}
将使文档得分为 _score = 0.12*2.5 + 3.0*0.2 = 0.9
使用自然语言处理模型的示例请求
编辑resp = client.search( query={ "sparse_vector": { "field": "ml.tokens", "inference_id": "the inference ID to produce the token weights", "query": "the query string" } }, ) print(resp)
const response = await client.search({ query: { sparse_vector: { field: "ml.tokens", inference_id: "the inference ID to produce the token weights", query: "the query string", }, }, }); console.log(response);
GET _search { "query":{ "sparse_vector": { "field": "ml.tokens", "inference_id": "the inference ID to produce the token weights", "query": "the query string" } } }
使用预计算向量的示例请求
编辑resp = client.search( query={ "sparse_vector": { "field": "ml.tokens", "query_vector": { "token1": 0.5, "token2": 0.3, "token3": 0.2 } } }, ) print(resp)
const response = await client.search({ query: { sparse_vector: { field: "ml.tokens", query_vector: { token1: 0.5, token2: 0.3, token3: 0.2, }, }, }, }); console.log(response);
GET _search { "query":{ "sparse_vector": { "field": "ml.tokens", "query_vector": { "token1": 0.5, "token2": 0.3, "token3": 0.2 } } } }
sparse_vector
的顶层参数
编辑-
field
- (必需,字符串)包含要搜索的标记-权重对的字段的名称。
-
inference_id
- (可选,字符串)用于将查询文本转换为标记-权重对的推理 ID。它必须是用于从输入文本创建标记的相同推理 ID。只允许使用
inference_id
和query_vector
中的一个。如果指定了inference_id
,则还必须指定query
。 -
query
- (可选,字符串)要用于搜索的查询文本。如果指定了
inference_id
,则还必须指定query
。如果指定了query_vector
,则不得指定query
。 -
query_vector
- (可选,字典)表示要搜索的预计算查询向量的标记-权重对字典。使用此查询向量进行搜索将绕过额外的推理。只允许使用
inference_id
和query_vector
中的一个。 -
prune
- (可选,布尔值) [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 是否执行修剪,从查询中省略不重要的标记以提高查询性能。如果
prune
为 true 但未指定pruning_config
,则将进行修剪,但将使用默认值。默认值:false。 -
pruning_config
-
(可选,对象) [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 可选的修剪配置。如果启用,这将从查询中省略不重要的标记,以提高查询性能。仅当
prune
设置为true
时才使用此项。如果prune
设置为true
但未指定pruning_config
,则将使用默认值。pruning_config
的参数为-
tokens_freq_ratio_threshold
- (可选,整数) [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 频率高于指定字段中所有标记的平均频率的
tokens_freq_ratio_threshold
倍的标记被视为异常值并进行修剪。此值必须介于 1 和 100 之间。默认值:5
。 -
tokens_weight_threshold
- (可选,浮点数) [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 权重小于
tokens_weight_threshold
的标记被认为是不重要的并进行修剪。此值必须介于 0 和 1 之间。默认值:0.4
。 -
only_score_pruned_tokens
- (可选,布尔值) [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 如果
true
,我们仅将修剪后的标记输入评分,并丢弃未修剪的标记。强烈建议将此值设置为主查询的false
,但可以将其设置为重新评分查询的true
,以获得更相关的结果。默认值:false
。
tokens_freq_ratio_threshold
和tokens_weight_threshold
的默认值是基于使用 ELSERv2 进行的测试选择的,该测试提供了最佳结果。 -
ELSER 查询示例
编辑以下是引用 ELSER 模型执行语义搜索的 sparse_vector
查询的示例。有关如何使用 ELSER 和 sparse_vector
查询执行语义搜索的更详细描述,请参阅本教程。
resp = client.search( index="my-index", query={ "sparse_vector": { "field": "ml.tokens", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?" } }, ) print(resp)
const response = await client.search({ index: "my-index", query: { sparse_vector: { field: "ml.tokens", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", }, }, }); console.log(response);
GET my-index/_search { "query":{ "sparse_vector": { "field": "ml.tokens", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?" } } }
多个 sparse_vector
查询可以相互组合或与其他查询类型组合。这可以通过将它们包装在布尔查询子句中并使用线性增强来实现
resp = client.search( index="my-index", query={ "bool": { "should": [ { "sparse_vector": { "field": "ml.inference.title_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } }, { "sparse_vector": { "field": "ml.inference.description_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } }, { "multi_match": { "query": "How is the weather in Jamaica?", "fields": [ "title", "description" ], "boost": 4 } } ] } }, ) print(resp)
const response = await client.search({ index: "my-index", query: { bool: { should: [ { sparse_vector: { field: "ml.inference.title_expanded.predicted_value", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", boost: 1, }, }, { sparse_vector: { field: "ml.inference.description_expanded.predicted_value", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", boost: 1, }, }, { multi_match: { query: "How is the weather in Jamaica?", fields: ["title", "description"], boost: 4, }, }, ], }, }, }); console.log(response);
GET my-index/_search { "query": { "bool": { "should": [ { "sparse_vector": { "field": "ml.inference.title_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } }, { "sparse_vector": { "field": "ml.inference.description_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } }, { "multi_match": { "query": "How is the weather in Jamaica?", "fields": [ "title", "description" ], "boost": 4 } } ] } } }
这也可以通过倒数排名融合 (RRF)来实现,通过具有多个标准
检索器的rrf
检索器来实现。
resp = client.search( index="my-index", retriever={ "rrf": { "retrievers": [ { "standard": { "query": { "multi_match": { "query": "How is the weather in Jamaica?", "fields": [ "title", "description" ] } } } }, { "standard": { "query": { "sparse_vector": { "field": "ml.inference.title_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } } } }, { "standard": { "query": { "sparse_vector": { "field": "ml.inference.description_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } } } } ], "window_size": 10, "rank_constant": 20 } }, ) print(resp)
const response = await client.search({ index: "my-index", retriever: { rrf: { retrievers: [ { standard: { query: { multi_match: { query: "How is the weather in Jamaica?", fields: ["title", "description"], }, }, }, }, { standard: { query: { sparse_vector: { field: "ml.inference.title_expanded.predicted_value", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", boost: 1, }, }, }, }, { standard: { query: { sparse_vector: { field: "ml.inference.description_expanded.predicted_value", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", boost: 1, }, }, }, }, ], window_size: 10, rank_constant: 20, }, }, }); console.log(response);
GET my-index/_search { "retriever": { "rrf": { "retrievers": [ { "standard": { "query": { "multi_match": { "query": "How is the weather in Jamaica?", "fields": [ "title", "description" ] } } } }, { "standard": { "query": { "sparse_vector": { "field": "ml.inference.title_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } } } }, { "standard": { "query": { "sparse_vector": { "field": "ml.inference.description_expanded.predicted_value", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "boost": 1 } } } } ], "window_size": 10, "rank_constant": 20 } } }
带有修剪配置和重新评分的 ELSER 查询示例
编辑以下是上述示例的扩展,它向 sparse_vector
查询添加了 [预览] 此功能处于技术预览阶段,可能会在未来的版本中更改或删除。Elastic 将努力修复任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。 修剪配置。修剪配置会识别要从查询中修剪的不重要标记,以提高查询性能。
标记修剪发生在分片级别。虽然这应该导致相同的标记在各个分片中被标记为不重要,但这并不能保证,因为它取决于每个分片的组成。因此,如果您在多分片索引上使用 pruning_config
运行 sparse_vector
,我们强烈建议添加一个重新评分筛选的搜索结果函数,其中包含最初从查询中修剪的标记。这将有助于缓解任何分片级别的不一致性与修剪的标记,并提供更好的整体相关性。
resp = client.search( index="my-index", query={ "sparse_vector": { "field": "ml.tokens", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "prune": True, "pruning_config": { "tokens_freq_ratio_threshold": 5, "tokens_weight_threshold": 0.4, "only_score_pruned_tokens": False } } }, rescore={ "window_size": 100, "query": { "rescore_query": { "sparse_vector": { "field": "ml.tokens", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "prune": True, "pruning_config": { "tokens_freq_ratio_threshold": 5, "tokens_weight_threshold": 0.4, "only_score_pruned_tokens": True } } } } }, ) print(resp)
const response = await client.search({ index: "my-index", query: { sparse_vector: { field: "ml.tokens", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", prune: true, pruning_config: { tokens_freq_ratio_threshold: 5, tokens_weight_threshold: 0.4, only_score_pruned_tokens: false, }, }, }, rescore: { window_size: 100, query: { rescore_query: { sparse_vector: { field: "ml.tokens", inference_id: "my-elser-model", query: "How is the weather in Jamaica?", prune: true, pruning_config: { tokens_freq_ratio_threshold: 5, tokens_weight_threshold: 0.4, only_score_pruned_tokens: true, }, }, }, }, }, }); console.log(response);
GET my-index/_search { "query":{ "sparse_vector":{ "field": "ml.tokens", "inference_id": "my-elser-model", "query":"How is the weather in Jamaica?", "prune": true, "pruning_config": { "tokens_freq_ratio_threshold": 5, "tokens_weight_threshold": 0.4, "only_score_pruned_tokens": false } } }, "rescore": { "window_size": 100, "query": { "rescore_query": { "sparse_vector": { "field": "ml.tokens", "inference_id": "my-elser-model", "query": "How is the weather in Jamaica?", "prune": true, "pruning_config": { "tokens_freq_ratio_threshold": 5, "tokens_weight_threshold": 0.4, "only_score_pruned_tokens": true } } } } } }
当执行跨集群搜索时,推理是在本地集群上执行的。